
Notational Programming for Notebook Environments: A Case
Study withQuantum Circuits

Ian Arawjo
Cornell University
Ithaca, NY, USA

iaa32@cornell.edu

Anthony J. DeArmas
Cornell University
Ithaca, NY, USA

ajd249@cornell.edu

Michael Roberts
Cornell University
Ithaca, NY, USA

mbr82@cornell.edu

Shrutarshi Basu
Harvard University
Cambridge, MA, USA

basus@seas.harvard.edu

Tapan Parikh
Cornell Tech

New York, NY, USA
tapan@represent.org

Figure 1: The main interface to our system, embedded in a Jupyter notebook: (1) a canvas torn open inside a line of code in a
cell; (2) fullscreen mode, accessed by touching or clicking on the canvas, with (3) a rudimentary toolbar.

ABSTRACT
We articulate a vision for computer programming that includes
pen-based computing, a paradigm we term notational programming.
Notational programming blurs contexts: certain typewritten vari-
ables can be referenced in handwritten notation and vice-versa.
To illustrate this paradigm, we developed an extension, Notate, to
computational notebooks which allows users to open drawing can-
vases within lines of code. As a case study, we explore quantum
programming and designed a notation, Qaw, that extends quantum
circuit notation with abstraction features, such as variable-sized
wire bundles and recursion. Results from a usability study with
novices suggest that users find our core interaction of implicit cross-
context references intuitive, but suggests further improvements to
debugging infrastructure, interface design, and recognition rates.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00
https://doi.org/10.1145/3526113.3545619

Throughout, we discuss questions raised by the notational para-
digm, including a shift from ‘recognition’ of notations to ‘recon-
figuration’ of practices and values around programming, and from
‘sketching’ to writing and drawing, or what we call ‘notating.’

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; •
Software and its engineering → Development frameworks
and environments; •Computer systems organization→Quan-
tum computing.

KEYWORDS
programming paradigms, pen-based interfaces, computational note-
books, quantum computing

ACM Reference Format:
IanArawjo, Anthony J. DeArmas,Michael Roberts, Shrutarshi Basu, and Tapan
Parikh. 2022. Notational Programming for Notebook Environments: A Case
Study with Quantum Circuits. In The 35th Annual ACM Symposium on User
Interface Software and Technology (UIST ’22), October 29-November 2, 2022,
Bend, OR, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/
3526113.3545619

https://doi.org/10.1145/3526113.3545619
https://doi.org/10.1145/3526113.3545619
https://doi.org/10.1145/3526113.3545619

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

1 INTRODUCTION
Today, typewritten systems form the de-facto standard and dom-
inant paradigm for computer programming. Yet, at the advent of
programming, the earliest computer programming notations were
handwritten, not typed. In the celebrated 1945 First Report on the
EDVAC, for instance, John von Neumann equated diagrams to text
and vice-versa [63]. In fact, notations were only serialized and
called programming ‘languages’ when typewriter interfaces were
appropriated for programming [4].

In this paper, we ask how recent advances in pen-based hardware
and machine learning might reconfigure programming practice. We
articulate one vision, a paradigm we call notational programming,
which supports communications between handwritten and type-
written notations. Through this work, we seek to question what
it means to “write” code –and to accomplish our vision, we argue,
may not just entail the development of new user interfaces or im-
proved recognition of existing notations like flow charts, but an
active reconfiguration of cultural practices, representations, and
values that have historically arisen around programming.

To explore notational programming, we designed an extension
to Jupyter notebooks, Notate, that provides the ability to open
drawing canvases within lines of code, allowing functions to accept
canvas objects natively as arguments. Our architecture also passes
these objects a reference to the local scope, enabling typewritten
variables to be referred to in the handwritten context and vice-versa.
We call this interaction implicit cross-context references, extending
prior work on bimodal programming by further blurring territories
between ‘input’ and ‘output’ [33].

To test a notational programming interface and implicit cross-
context references in a concrete domain, we chose quantum com-
puting (QC). This choice was strategic: programmers for QC, even
when typing code, regularly translate between circuit diagrams
and text [25]. An exploratory paper by Ashktorab et al. noted the
potential for pen-based computing in QC spaces [5], but no such
systems, to the best of our knowledge, exist so far. We introduce a
toy notation, Qaw, that augments quantum circuit notation with
abstraction features, such as custom gate definition, bundled wires,
and recursion. We implemented an interpreter for a subset of Qaw
using deep learning and classical computer vision techniques.

To explore the efficacy of our Notate and Qaw prototypes, we
then ran a study with 12 programmers who were familiar with
Python and computational notebooks but novices to quantum pro-
gramming. Participants were given six circuits of increasing com-
plexity and tasked with programming them into the machine. We
found that almost all participants found our concept of implicit
cross-context references intuitive; however, feedback suggests fur-
ther improvements can be made to debugging infrastructure, in-
terface design, and recognition rates. To validate our approach, we
also compared Notate and Qaw to a typical typewritten workflow
for quantum programming using the IBM Qiskit API. Results show
that, for Python programmers, Qaw was comparable to Qiskit in
terms of performance time, but suggest that further research is
needed to understand the relative advantages of each approach.

To the best of our knowledge, this paper is the first system
to explore a handwritten, diagrammatic paradigm for quantum
computer programming (following the suggestion of sketch-based

Figure 2: Circuit equalities from the advent of computing to
quantum computing. Left: A circuit equality written by von
Neumann in First Draft of a Report on the EDVAC, 1945 [63].
Right: a circuit equality from a quantum computing text.

interfaces made in Ashktorab et al. [5]). It is also one of the few
papers to explore (and take seriously) a handwritten paradigm of
programming, which we define as notational programming. The
rest of this paper is organized as follows: the front half covers related
work (Section 2), a general description of a notational programming
system (Section 3), and a case study with designing Qaw notation
for quantum circuits (Section 4). The back half covers our evaluation
of Notate and a subset of Qaw: usability study design (Section 5),
findings (6), and comparison with a typewritten API (7). Finally,
our discussion (8) serves to reflect on our design process, rationale,
and comparison with graphical user interfaces (GUIs).

2 RELATEDWORK
In this section we summarize prior work in programming and HCI
and drawing-based interfaces related to our work. Interfaces for
quantum computer programming will be covered in Section 4.

2.1 Programming Systems and HCI
A rich tradition at UIST and beyond focuses on developing novel
interfaces for programming. One focus has been on systems for
educational or novice users to make entry-level CS more accessible.
These include block-based GUI environments, tangible program-
ming with physical objects, or manipulatives in virtual reality (e.g.,
[66–68, 72]). More recently, a growing community of researchers
explore intersections between the fields of computer programming
and human-computer interaction, or PL+HCI. Some examples of
such work include enabling computers to complete unfinished pro-
grams [29, 50], constructively critiquing the design of popular PLs
[11, 71], adapting usability methods for introducing new features
to existing languages [10], understanding task-switching between
languages [31], and using machine learning or crowdsourcing to
support code generation [46, 55, 62].

Some programming environments seek to explicitly or implicitly
blend “visual” and “textual” representations. Max/Msp and various
game engines such as Unity and Godot, for instance, foreground
flow diagrams as their main programming interface but retain the
ability to customize blocks with textual (typewritten) code in lan-
guages such as JavaScript and Lua. Rarely, however, are visuals
interspersed within typewritten code [6]. One contemporary ex-
ception is the computational notebook paradigm popularized by
the iPython notebook platform, which has received major atten-
tion by HCI researchers [9, 32, 37, 39, 54, 64, 65, 69]. Work in this
area includes “bidirectional” coding, where “visual” and “textual”
modalities are mixed in the form of click-and-drag GUIs, and edits

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 3: A user copies an image of a quantum circuit from
search results (1) and pastes it directly into a function call (2).
The user runs the cell and views output (3), verifying that the
interpretation is correct.

to one affect the other [33, 69]. Other work explores the integration
of GUIs inside computational notebooks for visualizing and navi-
gating data [2, 39, 49]. An early precursor to this type of work is
the “heterogenous visual languages” vision of Erwig & Meyer [20],
which is perhaps closest to the vision we will lay out here, albeit
without the focus on pen input.

2.2 Pen-based interfaces for programming
A long tradition in programming tools involves ‘sketching,’ starting
from Iverson’s SketchPad and continuing to sketch recognition of
diagrams and pen gestures [3, 13, 19, 41, 60]. Within HCI, sketching
interfaces have been applied to support UI designers, such as in
James Landay & coauthors’ SILK andDENIM systems in themid-90s
to early 00s [40, 41, 44], as well as work by Ellen Yi-Luen Do, Mark
Gross, Tracy Hammond and Randall Davis [13, 28, 30, 35]. Some of
this work has sought to make sketching more interactive, offering
tight sketch-interpretation feedback loops where shape gestures
are successively recognized and/or beautified [19, 56]. Other sys-
tems convert handwritten diagrams into code within unidirectional
workflows from early-stage sketches to textual code [45, 59]. One
such example is Li et al.’s AlgoSketch, which supported recogni-
tion of code-like lines of freehand mathematics notation [42]. But
while these and other systems have converted handwritten notation
into computer programs [17, 42], to the best of our knowledge, no
drawing interface has been embedded within a typewritten pro-
gramming environment, while allowing for implicit communication
between handwritten notation and textual code.

3 WHAT IS NOTATIONAL PROGRAMMING?
Here, we define the key features, principles, and rationale behind
the notational programming paradigm. Our interface, depicting
drawing canvases inside typewritten code, is shown in Figure 1.
Users may draw on the canvas (1), resize it by dragging the corner,
or click/touch it to open up fullscreen view (2), which presents a

Figure 4: In a code cell, a user draws a diagram to calculate
the value of angle a between two 2d vectors, b and c, defined
as tuples in Python code. The Interpreter geo takes a Canvas
and (implicitly) a reference to the local scope. Interpreting
the diagram, it associates label a with an angle, realizes that
a is not set, and declares it as a newvariable in the host scope.

rudimentary toolbar (3). Canvases in a notebook cell move in re-
sponse to text edits in the editor (e.g., newlines) and can be deleted,
copied, and pasted alongside textual code, analogous to the “in-
teractive visual syntax” GUIs of Andersen et al. [2]. Our interface
also allows users to paste in images from outside the notebook to
instantiate a new canvas. Figure 3 depicts an example of copying a
quantum circuit from Google Image search that is interpreted into
an IBM Qiskit QuantumCircuit object.

To illustrate a simpleworkflow, consider the “notational program”
in Figure 4. Here, a user has specified two vectors b and c as 2-
tuples in Python code. Below these declarations, the user has drawn
a diagram of the kind found in an introductory geometry class,
depicting these vectors, writing an angle symbol between them,
and labelling the angle a. To declare how their notation should
be interpreted, they wrap their drawing canvas in a call to geo().
The geo interpreter then segments and recognizes portions of the
drawing, matches labeled parts of the diagrams to information
already in the current Python context, solves for the values of
undefined variables (here, a), and binds them in the host scope.

This example illustrates what we call implicit cross-context ref-
erences: the typewritten b and c becomes b and c, resp., while the
handwritten a implicitly declares a Python variable a in the type-
written context. Note that the meaning of a diagram need not be
literal: c in fact points in a different direction than what is drawn.

3.1 Definition and principles
Now that we have built some intuition, we provide a general defi-
nition. A notational programming system consists of three compo-
nents: a host environment, a pen-based interface, and a communica-
tion protocol by which they interact. By host environment, we refer
to a typewritten or drag-n-drop IDE with a corresponding “host lan-
guage.” For this paper, the Jupyter notebook interface and Python
are the host environment. By notational programming interface, we
mean a system where:

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

Figure 5: In a code cell, a user draws a diagram without pre-
specifying values for sides a, b and c. The diagram returns a
queryable object. By setting some parameters (here, the ask
method), the object returns the value of the remaining un-
specified length. Note that this example is meant to express
the possibilities afforded by notational programming, not
argue the quality of this particular example’s API design.

(1) users can interactwith drawing canvases as first-class pieces
of “code” embedded inside the host environment (copy and
paste, drop in, delete, etc.)

(2) users can draw on or otherwise edit the canvases using
drawing features, with a stylus, touch, mouse, etc.

(3) the system facilitates a communication protocol between
the typewritten and handwritten contexts

A communication protocol specifies how the host environment
“sees” image canvases embedded inside of it: what underlying types
or objects they represent. In our implementation, the Python en-
vironment reads the canvas as an image object (a NumPy array)
extended with some additional metadata, such as strokes, pressure
data and timestamps. Importantly, the metadata includes a snapshot
of the local scope captured at the point of execution (when the line
of code with the canvas is read by the Python kernel). For brevity,
we shall call this image-plus-metadata a Canvas object.

At the most basic level, one could use the notational program-
ming system to set a variable directly equal to an image, or other-
wise use it in a function call, without having to first save image
data to a file.1 The Canvas can, moreover, be something users
create or edit using standard drawing tools. The intention of a
notational programming system, however, is not simply the ease
of importing images, but on handwritten notation as a first-class
element when defining computation. To allow this, a notational
programming system facilitates cross-context communication be-
tween labels in a handwritten notation (a handwritten system of
marks, signs, graphics, or characters with a syntax and semantics,
such as math, music, state diagrams, etc) with typewritten labels
(whether variable names, functions, classes, etc) in the host scope.
By cross-context, we mean that not only can handwritten nota-
tion reference typewritten variables, but later typewritten notation
can reference handwritten variables. We use “variables” broadly to
mean any named object in the host scope: functions, classes, etc.

1This is similar to drag-n-drop functionality in Mathematica: https://reference.wolfram.
com/language/howto/GetAnImageIntoTheWolframSystem.html.

Practically, in order to interpret a notation in a particular exe-
cution context, one must write a notation Interpreter. This step is
akin to defining a typed literal macro [49], albeit with a handwrit-
ten notation recognizer instead of a textual lexer. The process of
interpretation can be enumerated into steps, roughly:

(1) recognition: computer vision process visually recognizes
the notation, syntactically; often this requires a segmenta-
tion step where symbols are extracted from “the rest” of the
drawing and associated with parts of it

(2) semantic parser: the recognized syntactic object is parsed
in the notation’s semantics (potentially throwing errors or
warnings, say for type mismatches or ambiguities)

(3) communicationpolicy: informally, a set of read/write rules
between the host scope and the interpreter that specifies
what variable names may be “read” into the notational con-
text, how they should be translated,2 and what typewritten
variables may be declared or changed during the interpre-
tation that are carried into the host scope. More formally, a
read policy would specify both the domain of valid names
and the expected types of the referenced variables.

Similar to macros for a typewritten notation [48], over the course
of its execution, an Interpreter may:

(1) Read certain variables (as in names) in the host scope
(2) Modify existing variables in the host scope
(3) Declare new variables in the host scope and bind them
(4) Return a value (like a normal function)
An Interpreter that implicitly modifies or reads the local scope

acts differently than a typical function, because (at least for Python)
it may violate the scoping rules of the host language. For example,
the normal Python code:

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

Figure 5: In a code cell, a user draws a diagram without pre-
specifying values for sides 𝑎, 𝑏 and 𝑐. The diagram returns a
queryable object. By setting some parameters (here, the ask
method), the object returns the value of the remaining un-
specified length. Note that this example is meant to express
the possibilities afforded by notational programming, not
argue the quality of this particular example’s API design.

(1) users can interactwith drawing canvases as first-class pieces
of “code” embedded inside the host environment (copy and
paste, drop in, delete, etc.)

(2) users can draw on or otherwise edit the canvases using
drawing features, with a stylus, touch, mouse, etc.

(3) the system facilitates a communication protocol between
the typewritten and handwritten contexts

A communication protocol specifies how the host environment
“sees” image canvases embedded inside of it: what underlying types
or objects they represent. In our implementation, the Python en-
vironment reads the canvas as an image object (a NumPy array)
extended with some additional metadata, such as strokes, pressure
data and timestamps. Importantly, the metadata includes a snapshot
of the local scope captured at the point of execution (when the line
of code with the canvas is read by the Python kernel). For brevity,
we shall call this image-plus-metadata a Canvas object.

At the most basic level, one could use the notational program-
ming system to set a variable directly equal to an image, or other-
wise use it in a function call, without having to first save image
data to a file.1 The Canvas can, moreover, be something users
create or edit using standard drawing tools. The intention of a
notational programming system, however, is not simply the ease
of importing images, but on handwritten notation as a first-class
element when defining computation. To allow this, a notational
programming system facilitates cross-context communication be-
tween labels in a handwritten notation (a handwritten system of
marks, signs, graphics, or characters with a syntax and semantics,
such as math, music, state diagrams, etc) with typewritten labels
(whether variable names, functions, classes, etc) in the host scope.
By cross-context, we mean that not only can handwritten nota-
tion reference typewritten variables, but later typewritten notation
can reference handwritten variables. We use “variables” broadly to
mean any named object in the host scope: functions, classes, etc.

1This is similar to drag-n-drop functionality in Mathematica: https://reference.wolfram.
com/language/howto/GetAnImageIntoTheWolframSystem.html.

Practically, in order to interpret a notation in a particular exe-
cution context, one must write a notation Interpreter. This step is
akin to defining a typed literal macro [49], albeit with a handwrit-
ten notation recognizer instead of a textual lexer. The process of
interpretation can be enumerated into steps, roughly:

(1) recognition: computer vision process visually recognizes
the notation, syntactically; often this requires a segmenta-
tion step where symbols are extracted from “the rest” of the
drawing and associated with parts of it

(2) semantic parser: the recognized syntactic object is parsed
in the notation’s semantics (potentially throwing errors or
warnings, say for type mismatches or ambiguities)

(3) communication policy: informally, a set of read/write rules
between the host scope and the interpreter that specifies
what variable names may be “read” into the notational con-
text, how they should be translated,2 and what typewritten
variables may be declared or changed during the interpre-
tation that are carried into the host scope. More formally, a
read policy would specify both the domain of valid names
and the expected types of the referenced variables.

Similar to macros for a typewritten notation [48], over the course
of its execution, an Interpreter may:

(1) Read certain variables (as in names) in the host scope
(2) Modify existing variables in the host scope
(3) Declare new variables in the host scope and bind them
(4) Return a value (like a normal function)
An Interpreter that implicitly modifies or reads the local scope

acts differently than a typical function, because (at least for Python)
it may violate the scoping rules of the host language. For example,
the normal Python code:

1 x = 0

2 def foo(img):

3 x = recognize_symbol(img)

4 foo(Image.load("handwritten_3.png"))

5 print(x)

outputs 0 to the console, because outer variable x cannot be set
within foo (without the global keyword). However, the code:

for some interpreter interpret() would print 3 (assuming,
of course, the recognition step was successful). Here we violate
Python’s scoping rules so that the Interpreter may act similarly to a
line of typewritten code –which has access, implicitly, to variables
defined in the local/host scope.

Finally, an object returned by an Interpreter may not be a direct
value, but require certain parameters in order to specify its value
(as in, a lambda function). Consider a triangle with labels 𝔞, 𝔟,
and 𝔠 that are not defined in the host environment (Figure 5). The
interpreter geo returns an object “with holes” –that is, the meaning
is indeterminate until it receives values for (some of) the undefined
parameters, akin to a lambda function. For instance, we might use a

2For instance, we may define a policy whereby Greek letters like 𝜃 declared in the
notational context are accessible in later Python code by referencing the name theta.

outputs 0 to the console, because outer variable x cannot be set
within foo (without the global keyword). However, the code:

for some interpreter interpret() would print 3 (assuming,
of course, the recognition step was successful). Here we violate
Python’s scoping rules so that the Interpreter may act similarly to a
line of typewritten code –which has access, implicitly, to variables
defined in the local/host scope.

Finally, an object returned by an Interpreter may not be a direct
value, but require certain parameters in order to specify its value
(as in, a lambda function). Consider a triangle with labels a, b,
and c that are not defined in the host environment (Figure 5). The
interpreter geo returns an object “with holes” –that is, the meaning
is indeterminate until it receives values for (some of) the undefined
parameters, akin to a lambda function. For instance, we might use a
method obj.set(a=4) to set a to length 4. Here, the object would
2For instance, we may define a policy whereby Greek letters like θ declared in the
notational context are accessible in later Python code by referencing the name theta.

https://reference.wolfram.com/language/howto/GetAnImageIntoTheWolframSystem.html
https://reference.wolfram.com/language/howto/GetAnImageIntoTheWolframSystem.html

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Notation Term Use Representation in Qaw
wire, qubit or
“qubit line”

Stands for a single qubit (quantum-bit). Read
from left to right.

(same)

quantum register
(or qubit bundle)

Stands for n qubit lines bundled together. Often
used in more informal definitions of circuits.

(without the n)

gate Stands for an operation (here, H) on the qubit(s)
input into it (line(s) attached to left of box).

(same, but only capital letters
accepted)

controlled X-gate Stands for a controlled-X operation on two
qubits.

(same)

ket Initializes the qubit line to its right (here, to state
0). Sometimes a complex state like |ψ ⟩ is written.

(same, but only 0, 1, +, or - cur-
rently supported)

measure Measures a qubit, collapsing the quantum state
to a binary value.

–| (line with a stopper)

(for instance)

assignment opera-
tion or subcircuit
definition

Defines a subcircuit of the given name (here, C).
The subcircuit can be used as a gate in later cir-
cuits.

With Notate, accomplished by
setting a typewritten letter A-C
equal to a drawing of the circuit
wrapped in a qcr() call.

(for instance)

ellipses operation
(used informally)

Informal. The ellipses stands for repeating a pat-
tern across n qubit lines. Pattern is inferred from
surrounding context. Sometimes paired with
parametrized gates.

Accomplished via recursive def-
inition, which uses both assign-
ment and slash-wire notation
for bundling qubits. See Appen-
dix A section A.0.8 for example.

Table 1: Some common elements of notation that practitioners use to write quantum circuits. For a full description of notation
included in Qaw, see Appendix A. For an intro to quantum computing, see the Qiskit textbook [34].

returns another object where a=4. This object would still need b or
c to be defined, to infer the last side. The return object will typically
need to do some unification and constraint solving in order to fill
in these fields.

4 CASE STUDY: THE QAW QUANTUM
CIRCUIT NOTATION

Having described the notational programming paradigm in the
previous section, we now narrow our scope to explore one potential
application domain: quantum programming. This section reviews
our motivations, design methodology, and specification for the Qaw
(quantum-draw) notation and provides two examples. To aid readers
less familiar with quantum computing (QC), Table 1 lists some
common notation for quantum circuits, along with names, uses, and
corresponding notation in Qaw. A full accounting of the notation
included in Qaw appears in Appendix A. For an introduction to
quantum computing, see the Qiskit textbook [34].

Quantum circuits are used to describe algorithms run on quan-
tum computers. The general workflow of a researcher developing a
new quantum algorithm is split into roughly two steps:

(1) Pencil and paper. A programmer plans their algorithm by cal-
culating in quantum mechanics and linear algebra notation,
and draws a quantum circuit.

(2) Typing code and debugging. The programmer translates their
circuit into a typewritten programming language/API, out-
puts a diagram representation and inspects it, runs the code
and observes the outcome, and edits and debugs.

Current software for quantum programming primarily supports
step 2 of this process [5]. Typewritten approaches range from APIs
in existing languages (e.g., Python for IBM Qiskit and Google Cirq
[24, 34]) to entirely new languages (e.g., Microsoft Q# [61]). Re-
searchers have also developed drag-n-drop graphical user inter-
faces, aiming to make quantum computing easier for novices (e.g.,
IBM Composer and Quirk [5, 21]). We were motivated to choose
quantum computing for our case study after noticing how circuit
diagrams remain a central feature of QC APIs and often appear
side-to-side with typewritten code in many resources.3

4.1 Notation Design Process
One of the first steps in designing notational programming interface
involves designing a notation for a particular domain. To produce
the Qaw notation, we conducted a survey of quantum programming
resources. We surveyed circuits as they appear in papers on quan-
tum algorithms, online tutorials and wikis, sketches in blog posts
and class notes, example code, and textbooks. Given that one of the
limitations of contemporary GUIs for QC is their lack of abstrac-
tion tools, we particularly paid attention to how authors handle
abstraction in their circuit diagrams. We found several elements
for denoting abstraction:

• Slashes bundle an abstract number of qubit lines, usually
with a parameter n written above the slash

• Sub-circuits are declared using an assignment operator =

3In Google Cirq, for instance, a circuit diagram is output as ASCII text to the terminal
[24]; in IBMQiskit, a diagram is drawn to a Jupyter plot [34]; Quipper outputs diagrams
[25] and QuECT embeds ASCII quantum circuits into existing PLs [8].

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

• Ellipses (...) are used to imply a repeating pattern within or
across qubit and bit lines (e.g., last row of Table 1)

• Parameters appear either as arguments in parentheses or
exponentials to a gate name

• A less common but powerful operation is recursive circuit
definition, for instance in Rennela & Staton [53, p. 18]

We aimed to incorporate many of these prior conventions while
designing our notation with an eye towards simplicity and reducing
the effort required to hand-write elements. For instance, in Qaw one
does not need to write a size parameter n for wire bundles above a
slash, except in cases where one wishes to use the parameter else-
where, needs to distinguish it from another, or wishes to implicitly
define its size by inheriting from a typewritten variable. Nor do
they need to explicitly write the tensor product in a gate (e.g., the
⊗n in H⊗n), since the type of gate may be inferred from the type of
the input. Our choices were also governed by recognition accuracy
–e.g., we opted not to include ellipses (as an option for suggesting
repeated segments of circuits) since ellipses may be more prone to
recognition error and ambiguity. Instead, the power of ellipses is
obtained through recursive circuit definition.

While designing this notation, the first author paper prototyped
how one would apply the notation to implement real quantum
algorithms by handwriting solutions to tutorials in IBM Qiskit and
Microsoft Q#, alongside the Python and Q# solutions to these tasks.
They applied an iterative design process to amend the notation,
reducing effort in favor of brevity where possible (e.g., the choice
to depict the measure symbol as a capped output line, –|), or ex-
tending it (in the case of measures that then control later qubit
gates, used in a quantum teleportation circuit). Nevertheless, just
as programming languages like JavaScript are never “final,” so too
do we expect notations to evolve and change as time goes on and
more communities come into contact with the technology [36]. We
leave a full description of our current iteration of the Qaw notation
and its components to Appendix A, for interested readers.

4.2 Examples: Superdense Coding & Grover’s
Algorithm

To illustrate how Qaw works in practice, we wrote a small “no-
tational program” for superdense coding (Figure 6), a common
example quantum algorithm [34, 51]. Here, a user has specified
bits a and b in typewritten code. They then drew a diagram that
uses these variables to control gates X and Z, which essentially
functions as an if statement –if a, then apply gate X; otherwise,
let the qubit pass through this part untouched. Measure notation
–capped ends of output wires –indicate to measure both qubits. A
later “run” method (not pictured) would then run the circuit Q on a
quantum computer, observing the output. The equivalent Python
code using Qiskit is depicted at the bottom of the figure.

For a more complex example, consider the general circuit for
Grover’s Algorithm, as presented in the Qiskit textbook (Figure 7,
top). This “abstract” circuit uses a common, albeit informal abstrac-
tion, the slashed-wire or “wire bundle” notation, to represent n
inputs succinctly. The circuit may be coded in the current iteration
of our Qaw notation using a similar slash (Fig. 7, bottom), here

Figure 6: A common circuit for superdense coding, hand-
written in Qaw (top) with Qiskit code for comparison. No-
table features: 1) circles mark classical control bits a and b
2) kets initialize qubit lines, 3) stoppered outputs represent
‘measure’ operations. Here a, b variables are implicitly refer-
enced in the handwritten context as classical bits that con-
trol gates.

where the diffusion subcircuit D is also written using slash abstrac-
tions. To generate the same abstract circuit in Qiskit and Python
requires using loops or recursion across n inputs.

4.3 Implementation
We implemented an interpreter qcr for a subset of the Qaw notation,
using a combination of deep learning and classical sketch recogni-
tion techniques. The qcr function takes a Canvas and outputs either
(1) an IBMQiskit QuantumCircuit object or (b) an abstract wrapper
over a Qiskit QuantumCircuit, called AbstractQuantumCircuit,
which needs parameters (e.g., n for number of input wires) to gener-
ate a “concrete” QuantumCircuit. The abstraction is necessary as
Qiskit does not support specifying circuits with abstract elements.
Including Notate, our full system took about a year for the first
author to build, including (re)training of the ML model and an iter-
ative process to improve the heuristic part of the algorithm. The
architecture of our recognition system is illustrated in Figure 8.

5 USABILITY EVALUATION
Using this implementation, we proceeded to run a usability test of
our Notate interface with a subset of the Qaw notation. Our goals
were to investigate how novices would use and perceive a nota-
tional programming interface in order to solve a series of QC tasks.
We wondered especially about conceptual understandings of our
core concept, issues around mode-switching between typing and
drawing, and values participants might hold around different types

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 7: Top: a way to write Grover’s algorithm, from the
Qiskit textbook, depicting the slash notation used in many
quantum computing resources [34]. Bottom: the above cir-
cuit “coded” in Notate with a version of the Qaw notation,
whereD is diffusion circuit andU is the oracle (to be defined).
The D circuit is a solution to Task 3 in our user study.

of coding practices. Here we describe our study design, materials,
and participants. We also validated our approach by comparing
completion of the same tasks with a typewritten API, which we
will discuss in Section 7.

5.0.1 Task Design and Scaffolding. Since our system targeted
translations between diagrams and typewritten code, we settled
on examining the “translation work” [4] users perform when pro-
gramming quantum circuits into the machine. We designed a pro-
gression of tasks focused on a subset of the Qaw notation, designed
to (1) introduce novices to quantum circuits and (2) focus on our
handwritten references concept, where custom gates, defined as
typewritten Python variables with capital letters A-C, may be re-
ferred to in handwritten diagrams within the same scope. Much
like a traditional API, the Qaw notation includes an array of com-
plex components with nuances that could not be fully introduced
within a 2 hour time-frame. Choosing to recognize only a subset
also increases accuracy and reduces development costs.

We designed our tasks to lead up to asking participants to pro-
gram a recursive circuit structurally similar to the Quantum Fourier
Transform (QFT), omitting the parametrization and final multi-
swap gate. Along the way, we chose some circuits specifically for
their relationship to real quantum algorithms: Task 1 is a Bell State;
while Task 3 is the n-ary diffusion subcircuit of Grover’s Algorithm.
Other circuits were chosen for pragmatic or scaffolding reasons:
Task 2 is a four-line circuit that we expected would require more
time drawing than typing; Task 4 introduces the idea of defining
subcircuits; and Task 5 introduces recursive definition. Task 6 tests
all concepts that users had been taught across Tasks 1-5 (gates,
controlled gates, slash-wires, subcircuits, and recursive definition).

Our designs of Task 5 and 6 were meant to provide harder program-
ming problems than could be solved by the copying of an example
diagram. Further descriptions of our tasks, rationales and example
solutions are presented in Appendix B.

5.0.2 Participants. We recruited 12 participants (18-27 years old,
median 20; 6 male; 6 female) who all self-reported prior experience
in Python and using computational notebooks, but no prior knowl-
edge of quantum computer programming.4 These participants had
been randomly selected from a full pool of 24 participants (the
remainder selected into our typewritten condition, discussed in
Section 7). Given that quantum programming is rather niche, we
anticipated that we could not recruit enough in-lab participants
with prior expertise; even if we could, expert participants may be bi-
ased towards the quantum programming interface they are familiar
with [10, 68]. Of those who participated, eleven were undergradu-
ates, and one was a PhD student. Nine majored in CS, with others
from Biology, Engineering, and Information Science fields.

5.0.3 Experiment Design and Procedure. After written con-
sent, a member of the research team introduced participants to a
Microsoft Surface tablet running the Jupyter notebook environment.
All participants used the same Surface PC. Participants completed
a tutorial, followed by six tasks of increasing complexity with an
optional 5 min. break after the third task. Following the tasks, par-
ticipants were asked to complete a Likert post-survey and a semi-
structured interview. The post-survey asked for Likert ratings from
1 (strongly disagree) to 5 (strongly agree) for five questions, listed
in Table 2. Each session was capped at 2 hours and participants
were compensated $30 in cash for their time.

5.0.4 Data collection, Setup andMaterials. We asked to record
the screen and microphone for the duration the study. A data logger
captured user interactions with the Jupyter notebook, such as code
cell edits, executions, tracebacks and toggling fullscreen mode. In
addition, a researcher typed timestamped observational notes of
the participant’s interactions, with guidance especially to focus on
anything not captured by the screen –e.g. shifting their posture,
jotting on scratch paper, or moving the PC.

Participants were given a blank piece of scratch paper and a
reference sheet. The sheet included circuit elements they would
encounter during the tasks, and was made to mimic API documen-
tation, since participants could not search online. Participants were
told they may ask the researcher for a hint if they get stuck; and
researchers were allowed to provide a hint if participants seemed
to be stuck (e.g., repeating themselves due to confusions around an
error). For the Notate condition, since our goal was not to test the
accuracy of the recognizer, in the event of a recognition error on
a correct (final) solution, the experimenter would let participants
know their solution was correct and let them move on. Our tutorial,
tasks, and materials are available in the Supplementary Material.

6 FINDINGS
All Notate participants were able to complete the first five tasks,
while nine were able to complete the last task within the allotted
4Our screening criteria were: “Participants must have prior experience in Python (taken
a class, workshop, etc.), have at least cursory/passing knowledge of Jupyter notebooks,
have no prior knowledge of quantum computing, and be comfortable drawing by hand.”

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

Figure 8: The process of interpreting a handwritten quantum circuit in our system. (Drawing is P14’s solution to Task 1.)

time (exceptions: P4, P6, P19). As shown in Table 2, post-survey
results indicate non-normal distributions and high variances, in-
dicating that there was a difference in how users adjusted to the
interface. We affinity diagrammed our qualitative data and identi-
fied three major clusters of findings: conceptual understandings,
error handling and debugging, and general usage patterns with the
Surface device and Notate interface.

6.1 Conceptual (mis)understandings
Notate participant’s conceptual (mis)understandings could be bro-
ken down into three kinds: first, understandings about our core
concept of implicit communication between typewritten and hand-
written notations; second, understanding the Qaw notation and
applying it successfully; and third, maintaining conceptual bound-
aries between what they considered “coding” versus “drawing.”

6.1.1 Understanding communication between typewritten
and handwritten contexts. By far, participants had few, if any,
difficulties understanding our core interaction of referencing type-
written variables within handwritten notation. They used it effec-
tively to reference smaller circuits, typewritten as Python variables
such as A, inside larger circuits, by handwritingA (Figure 9). Notate
participants would rarely bring up this interaction until pressed
with a specific question by the interviewer. P19 recounts:

I didn’t have any trouble with it. For themost part, it was
able to recognize my handwriting and the variable that
I typed.... was the same variable that I wrote down. [...]
I guess it’s the same intuition [as normal programming
practice]. It’s just instead of typing out a variable that
you’re referencing later, you’re just writing it.

Three participants, to our surprise, even thought that in-line
drawing canvases were an existing feature of Jupyter notebooks
which they were simply unaware of (P4, P5, P11; e.g. “Maybe this
is like a feature in Jupyter notebooks?”). These participants were
otherwise familiar with Jupyter and had used it before. Said P5:

I wasn’t sure if [the canvas] was a built-in library, or
some library that already existed? Or if that’s part of it?
[Interviewer: Part of the Jupyter interface?] Yeah, that
produces an image and then qcr() interprets the image.

A few participants described an initial hesitation followed by
quickly becoming accustomed (P17: “When I first read about it, it

felt very foreign... [but] that idea seemed less foreign and sort of
familiar once I did a couple of practices”). For two participants,
one of the main conceptual difficultiues stemmed from recursive
definition. These users either did not notice the typewritten C (due
to small font) in our Task 5 example diagram, or assumed the C
gate had a different function. Said P11, who was observed scrolling
quickly through the Task 5 text: “Maybe the C is just like, ‘lambda
function abstracted away.’ [Like C] just means recursion. And I didn’t
realize that the C was actually on the outside.” Examples of recursive
definition are shown in Figure 9.

6.1.2 Understanding theQawnotation and abstractions. Com-
mon conceptual errors of syntax across users are pictured in Fig-
ure 10. A few users also tried to slash multiple wires at a time, a
feature that was unsupported by our implementation since it can
lead to semantic ambiguities. Some of these confusions may merely
be learning hiccups, but they may also suggest further extensions to
the notation to support the varied ways people convey information
(e.g., the third example in Fig. 10). When encountering these errors,
the debugger would either print a warning, or raise an Exception
with an error message. Common error messages included semantic
“input / output size mismatch” errors when gates had different num-
bers of inputs than outputs (e.g., forgetting to draw the output wires
to a gate). For Tasks 5 and 6, some participants also encountered
“maximum recursion depth exceeded” errors that indicated their
recursive circuit definition never terminated.

We anticipated that many participants would struggle on Tasks
5 and 6 due to the presence of recursion (a concept possibly rarely
used in most participant’s programming in Python), requiring a
complex understanding of Qaw abstractions. This, indeed, was
what happened for some participants: for Task 5, both the median
time and the standard deviation was approx. 12 minutes; for Task 6,
median time was 27 minutes, st. dev 15.5 mins (for a full account-
ing, see Table 3). Closer examination of Task 5 reveals that two
participants were able to complete the task in a little over 1 minute,
and one about 1.5 min; while the longest two took about 30 min
and longer. Post-interview data indicates a possible reason for the
faster participants: three reported that they felt comfortable with
recursion and had taken (or were currently taking) the functional
programming class at our institution. P21, for instance, a CS ma-
jor, completed Task 5 in 5min 16s. When asked if anything in her
background might have contributed towards her ability to solve

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Number Question Median Mean St dev. Shapiro-Wilk (W, p)
Q1 The interface was easy to use. 4.0 3.58 1.1645 0.8596, p=0.0483**
Q2 The interface was enjoyable. 4.0 3.50 1.0000 0.8226, p=0.0171**
Q3 When I made a mistake/error, I found it easy to correct. 3.0 3.17 1.4668 0.8384, p=0.0265**
Q4 I felt confident using the interface. 4.0 3.75 1.1382 0.8512, p=0.0380**
Q5 When I completed the tasks, I felt like a programmer. 3.5 3.17 1.4035 0.9056, p=0.1874

Table 2: Post-survey Likert results for our Notate user study. Shapiro-Wilk tests indicate non-normal distributions at p<0.05
for all questions except Q5; hence, we report medians. Variances are high, consistent with programming studies [10].

Figure 9: P5’s solution to Task 6, generating a pattern similar
to the the body of the quantum fourier transform. Circuits
A and C are defined recursively using Qaw slash notation
and implicit cross-context references.

the tasks, she said “I understand recursion and know how to apply it.”
Her conceptual issues seemed less to do with recursion than with
nuances of the notation, such as where slashes could go.

6.1.3 “This doesn’t feel like programming at all”: Negotiat-
ing boundaries between “coding” and “drawing”.

“Coding begins with the drawing of the flow diagrams...”
–Goldstine & von Neumann, 1947 [22, p. 20]

One of our goals in conducting this work was to further explore
how programmers negotiate boundaries between what practices
constitute “programming” or “coding” and which do not, paralleling
the historic separation between the “textual” and the “visual” and
the dominance of the term “language” deriving from early adop-
tion of the typewriter [4]. When presented with a series of tasks
which effectively forefronts handwritten drawings in programming

practice, we wondered whether it would destabilize or challenge
participant’s notions of programming.

Some Notate participants said that notational programming and
especially recursive notation was unlike anything they had never
encountered before (P11, a TA for an upper-level CS class: “I don’t
really think this compares to any other kind of programming that
I’ve done in the past, like... It’s completely different”) or struggled
to compare it to their prior experiences. Participants would often
erect boundaries between their experience using the drawing inter-
face and what they considered “coding.” Said P21, when asked to
compare her prior coding experience to the study:

This is definitely less coding; it was more drawing. For
me coding is like, writing out... I guess, like this bottom
line [points to C.draw()], like actually typing it up?

Participants appeared to associate the keyboard or “typing” with
“coding” – often (somewhat ironically) resorting to the verb “writing”
to describe how coding differed from “drawing” –in order to exclude
drawing from the category of coding (P19: “It [the study] is not what
I was expecting... I thought I would have to write code” ; P7: “When
I’m programming, I don’t have to think about my handwriting... I just
have to think about, you know, writing stuff”). For them, “writing
code” was a practice inexorably attached to the keyboard.

Yet, cracks in participants’ conceptual boundary-making could
also occur. P7 began by claiming “this doesn’t feel like programming
at all,” but as he tried to defend his point, ended up questioning how
one would define programming, even asking the interviewer how
they would define it. This provides evidence that, above and beyond
technical concerns, notational programming interfacesmay call into
question participants’ ideas and values around what “programming”
and “writing” code entails, especially as they sit with the concept
for longer periods of time.

6.2 Error handling and debugging
In Notate, unlike a typical coding environment, errors may not be
syntactic/semantic –errors caused by the user –but “recognition
errors,” faults of the AI computer vision algorithm.5 Common to
usability studies of notation recognition systems [47], during our
studies we observed high variability in recognition rates for some
Notate participants versus others. Our post-survey provides some
support for this claim: the question with the lowest score and high-
est variance is “When I made a mistake/error, I found it easy to

5Technically, a “recognition error” can also occur in typewritten coding if the syntax/-
grammar parser has a bug.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

Figure 10: Three common “syntax errors” made by partici-
pants: (1) missing an output wire to a gate; (2) slashing an
output wire of a control gate; (3) trying to use a single dot
to represent a multi-Controlled Z gate in Task 3. In future
iterations, we can imagine supporting some of these styles.

correct” (Table 2). And indeed, those who struggled with the recog-
nizer earlier or for longer durations may have rated the interface
poorer. For instance, P14, who generally wrote in a very sketchy
style, grew frustrated with the recognizer and gave the interface
all 1’s in her post-survey, the lowest score across participants. By
contrast, P21, who rarely encountered a recognition error, rated
the interface all 4’s. In addition, comparisons with other pen-based
interfaces may also be involved: for instance, one participant, in the
post-interview, talked about their dislike of the Microsoft Surface,
over the iPad & Apple Pencil interface that they were familiar with.

6.2.1 Conflations between semantic and recognition errors.
In practice, the additional uncertainty of recognition errors meant
that conceptual misunderstandings of the Qaw notation –where the
user is learning, through trial and error, how to apply the syntax
–were often confounded by recognition errors or issues parsing (or
trusting) error messages.

If it had trouble, the recognition part of the interpreter would
throw a plot of what the AI saw (Figure 11); but in practice, this
could not catch errors when the AI thought it had parsed the draw-
ing correctly, but the semantic parser then threw an error from
the misrecognized circuit. This led to situations where participants
interpreted recognition errors as semantic or syntax errors and
vice-versa. For instance, while completing task 3, P7 struggled with
the recognizer. They at first interpreted a recognition error as a
semantic one, then tried a bunch more drawings before returning to
a drawing semantically equivalent to their original solution –only
this time, the recognizer worked, outputting the interpreted circuit:

Oh, come on, I did that the first time. [Frustrated, he
looks at the output. It doesn’t match the solution.] Is that
circuit... Damnit. [pause] Oh, that’s supposed to happen.
Hey yo, no, I don’t want to write that stuff [realizing he
will have to draw a second line of gates].

Here, P7 is frustrated in realizing that what they thought was
a semantic error was really the fault of the AI. This causes them
to momentarily doubt the current, correct output –blaming the
recognizer rather than their specification –before realizing that
the AI was correct this time (“oh, that’s supposed to happen”), and

Figure 11: DuringTask 5, P8 encounters an error plot thrown
by the AI recognizer (below the code cell). Noticing that a Z
gatewasmistaken for a B, P8 responds by erasing and rewrit-
ing her Z, then guessing the open corner was also an issue
(“Maybe it’s also this thing over here?”) and filling it in. She
runs the cell; it throws another error plot. The researcher
present remarks on the n−2 as a conceptual misunderstand-
ing –this notation was only used in a tutorial to explain how
a recursive definition unrolls. P8 erases it and runs the cell,
leading to the expected output (“Alright! Looks good.”).

reattributing blame to themselves (“no, I don’t want to write that
stuff”). Other participants would remark that a major similarity
between coding in Python and in Notate was that error messages
in Python were not always helpful. For instance, P3 mentions this
similarity, along with the new source of “blame”:

[In regular coding], the error you get is supposed to be
helpful, and it’s just not, or [it’s] straight up wrong...
But, being able to blame it on the image processing was
kind of interesting. Like, “oh, it could be an error with
me, or it could be an error with the computer.”

Consistent with other work in HCI on improvisation and repair,
sometimes these frictions were unexpectedly “productive” [38, p.
4]: for the wrong reasons, recognition breakdowns could end up
nudging user’s behavior in the right way. In other words, users
could read recognition errors as a sign their circuit was semantically
invalid –when it in fact was –and then stare at and amend their
drawing towards the correct solution.

6.2.2 “It doesn’t likemy handwriting”: Modifying drawings
in response to errors. A common pattern, especially if recogni-
tion errors happened early on, involved participants amending
their drawing practices to suit what they perceived the AI could
understand, such as starting from freehand drawing to resorting to
the rectangle and line tools. The sooner the recognizer failed, the
faster and more extreme the amendments to their practices. P17, for
instance, triggered a recognition error (with plot) on the Tutorial,
the only participant to have done so. She then noticed the rectangle
tool and began using rect and line tools for the rest the study. At
one point she writes a fast Z, then erases it and rewrites it slowly,
possibly worried about the AI’s interpretation. Participants who
rarely triggered a recognition error, by contrast, almost never used
the rect, line, or circle tools in the toolbar.

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

6.3 Interactions with hardware and software
Many Notate participants would touch the screen while mode-
switching between pen and keyboard. An especially popular mode
of interaction was tapping in-line canvases to enter fullscreen mode,
and tapping the background of fullscreen mode to close it. The
Ctrl-\ shortcut to place a canvas at the mouse cursor seemed to
be successful, with some participants only hesitating on Task 1 to
remember the shortcut and the term qcr() (resolving the confusion
by either using the reference sheet or looking back at the Tutorial).
Strikingly, we did not encounter a case where participants, after
Task 1, forgot to wrap their canvas in the qcr() function.6 One
issue with the Ctrl-\ shortcut was that, likely due to the weight
and size of the felt Surface keyboard, some participants accidently
pressed Ctrl-+ (plus) when trying to use it, which enlarged the size
of the browser content.

Many Notate participants preferred to use fullscreen drawing
mode, with few writing directly on the in-line canvases. One ex-
ception was P8, who resized canvases to be almost the width of the
code cell. So too would participants, especially for Task 5 and 6,
use the scratch paper extensively, sometimes to write solutions pre-
emptively on the paper before copying them onto a canvas. Their
behaviors here may have to do with worries over the software in-
terface, such as accidentally resizing the canvas, or hardware, such
as the glass screen and how participants perceived the fidelity of
the pen. Early in the study, P11 put the screen flat on the table, with
the felt keyboard flat below it, but the keyboard got in the way,
since it was near their elbow, leading to them returning the device
to upright (stand) mode. Other participants would remark that they
might have tried a “tablet” mode, e.g. P3: “I would have been fine,
every once in a while, when I had to type like qcr() just doing that on
a touch screen... because the keyboard was almost entirely unused.”
Two participants asked for a “lasso” tool, referencing the Notability
app they had used on their iPad. They wanted the lasso tool to
move around parts of their drawings or copy parts of drawings
within a canvas. Some participants mentioned having, or being
familiar with, the iPad Pro and Apple Pencil; only one mentioned
prior familiarity with a Microsoft Surface.

7 COMPARISONWITH A TYPEWRITTEN API
To assess the real-world performance of our system, and to vali-
date that our system wasn’t significantly worse when compared to
typewritten coding, we conducted a comparison of our interface
with an alternate condition where participants had to use the IBM
Qiskit API and Python to solve the same tasks. We chose Qiskit
because it is one of the most popular quantum programming APIs.
We also use this comparison to explore various tradeoffs between
the two conditions regarding task types and workflows.

7.1 Participants
We recruited 12 additional participants (20-26 yrs age, median 21.5;
8 male, 3 female, 1 unspecified) who had been randomly selected
from the full pool of 24 participants across studies, matching a

6In the Tutorial it had been explained that canvases are read internally as images,
so possibly participants drew from their Python knowledge to understand qcr as a
function taking an image argument.

between-group design.7 The study had the same timeframe of 2
hours and compensation of $30, with Python-equivalent tasks and
materials –a reference sheet to emulate API documentation, a piece
of scratch paper, and a tutorial. All task explanatory text was altered
to present the same conceptual information (as much as possible),
except in typewritten code.8 Examples in tasks were presented as
screenshots and could not be copied & pasted, to retain fairness
across conditions. All Qiskit participants used the same Microsoft
Surface as the Notate users except one, who used a MacBook Pro
2013. Participants could similarly ask for hints and, if they seemed
stuck, the researcher present could provide help. We altered the
name of the Qiskit API to ‘qcirc’ to eliminate potential biases around
perceptions that a corporate entity had designed the interface. Task
notebooks for both conditions are in our Supplementary Material.

7.2 Task by Task Performance
All Qiskit participants completed all tasks, although P13 requested
significant help on Task 6 from the researcher present, resulting
in pair programming the solution. Since a raw “time to task com-
pletion” metric does not factor in potential variability in reading
the task text, which varies across conditions, here we estimate start
time by the moment the user begins to work in the editor on the
problem –editing the code cell to add a canvas or type code. End
time is marked by the last execution of a code cell containing a
correct solution, before starting on the next task.

Shapiro-Wilk tests of normality indicate that Qiskit completion
time data is not normally distributed for all six tasks (p<0.01 for
every task except four, which is p<0.02). For the Notate task times,
none of the Shapiro-Wilk tests were significant, with only Task 2
near significance at p=0.059<0.1. For post-survey subjective mea-
sures, a Shapiro-Wilk test reveals similar non-normality at p<0.05
for all except one sample (Notate condition in Q5); and at p<0.01 for
all Qiskit post-survey questions. Because of these violations of nor-
mality and our between-subjects design, we report non-parametric
tests to compare conditions: Mann-Whitney U to test for differ-
ences between distributions, Levine’s test with the median (a.k.a.
the Brown-Forsythe test) for differences in variances, and Cliff’s
δ for non-parametric effect size. We report median task times and
other statistics in Table 3. Below, we unpack these findings with
interpretations from qualitative data.

7.2.1 Tutorial and Task 1: No significant differences found. Me-
dians and st devs. are close, suggesting that pen and keyboard input
is comparable for entering a simple Bell State circuit.

7.2.2 Task 2: indicates a trend towards theQiskit condition (p=.06),
but does not reach significance. We included Task 2 to test the in-
tuitive hypothesis that larger “concrete” circuits –that is, circuits
without abstractions, with several gates and control lines that go
in exact places –would be easier to solve via the keyboard.

7.2.3 Task 3: significant in favor of Notate p=0.04<0.05, with a
large effect size (Cliff’s δ=−0.5). Task 3 introduces a new abstraction
notation, the slash-wire, that participants have likely never seen
7Eight were undergraduates, three PhD/masters students, and one unspecified; six
majored in CS, the others in Engineering and Information Science fields.
8E.g., where Task 4 in the Notate study introduces subcircuits with an example of use,
the Qiskit study presents example code to accomplish the exact same thing.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

Task Notate (x̃, s) Qiskit (x̃, s) MWU (U1, p) Levene w/ med. (W, p) Cliff’s δ (effect size)
Tutorial 173.03s, 63.66s 150.19s, 87.66s 89.00, p=0.3408 0.75, p=0.3957 0.24 (small)
Task 1 59.27s, 25.71s 52.23s, 45.81s 82.00, p=0.5834 0.43, p=0.5202 0.14 (negligible)
Task 2 126.16s, 87.01s 77.81s, 62.48s 105.00, p=0.0606* 0.51, p=0.4837 0.46 (medium)
Task 3 265.79s, 176.85s 422.07s, 464.89s 36.00, p=0.0404** 0.80, p=0.3813 -0.50 (large)
Task 4 200.28s, 78.84s 233.71s, 284.03s 43.00, p=0.0998* 2.58, p=0.1225 -0.40 (medium)
Task 5 721.54s, 722.15s 323.35s, 298.75s 83.00, p=0.5444 5.57, p=0.0276** 0.15 (small)
Task 6 1619.33s, 925.31s 386.58s, 796.97s 125.00, p=0.0024*** 1.61, p=0.2181 0.74 (large)

Table 3: Task times (x̃=median, s=st. dev) and comparison statistics (Mann-Whitney U, Levene with median) across conditions.
(*=p<0.1 indicating a potential trend, **=p<0.05 indicating significant, ***=p<0.01 indicating highly significant)

before. The solution is also non-trivial (Fig. 7, subcircuit D), and
could have benefited from an extension to the notation whereby a
dot captures a bundled multi-controlled Z gate (Fig. 10, #3). In both
conditions, we did not include the multi-Controlled Z component
in the task’s tutorial explicitly, to emulate participants searching
an API to solve the task. We did, however, introduce the slash-
notation (in Notate) and (in Qiskit) remind participants of the “for i
in range(n)” abstraction in Python for accomplishing similar looping
over n inputs. Our observations suggest that the multi-Controlled Z
gate in Qiskit was a major pain point in the API, yielding confusion
for participants both on where to apply it (trying to apply it within
a for loop, initially) and how to enter qubit indices as an argument.

7.2.4 Task 4: suggests a slight trend in favor of Notate (p=0.09),
but does not reach significance. Observations of the Qiskit condition
indicate a potential pain point in the API regarding using custom
subcircuits, with some participants appearing confused about the
difference between output of .to_instruction() and subcircuit
objects. In Qiskit, one had to cast their subcircuit to an instruction,
then use the .append command with a list of indices as an argu-
ment; while in Notate, one could directly use their subcircuit by
drawing a letter A within a gate of their larger circuit.

7.2.5 Task 5: does not reach significance. However, Levene’s test
shows the two distributions have significantly different variances
at p<0.03. In 6.1.2, we noted that the fastest three Notate users took
under 1.5 minutes; the longest over 30 mins; here, the fastest Qiskit
user took about 3.5 mins; while the longest took 18.5 min.

7.2.6 Task 6: significant at p<0.01 in favor of Qiskit, with a large
effect size (Cliff’s δ=0.71).9 The relative speed of Qiskit users on
Task 6 is as hypothesized by our choices in the task design. However,
many Qiskit users were observed copying their solutions from Task
5 into Task 6, then amending inner calls, possibly accounting for
the size of the difference.10 In comparison, Notate participants,
although they could copy canvases within a notebook, could not
copy canvases from one notebook into another.

7.2.7 Likert Survey. Post-survey results indicate that Qiskit par-
ticipants rated the interface as easier to use and more enjoyable
9For the three Notate participants who could not finish Task 6, we include their times
in the analysis without edit, for they took at least 10 minutes or longer.
10P1, P23 and P24 copied the entire code cell; P15, P18 and P20 their entire recursive
function; P9 a few lines; P10, P16 flipped rapidly between browser tabs to manually
copy parts, including the base case; and P13 referenced it. Only P2 and P20 did not
reference Task 5.

compared to Notate (p<0.03; median=5 vs. 4 for both Q1 and Q2),
while other metrics did not reach significance. For “When I made
a mistake/error, I found it easy to correct,” a Levene’s test with
median yields a significant (p=0.018<0.05) difference in variances,
with higher variance for Notate (which we discussed in 6.2). The
high ratings for ease-of-use are somewhat unsurprising: after all,
we had recruited participants experienced with Python and Jupyter
notebooks, and the Qiskit condition did not ask them to do much
more than use the interface they were already accustomed to. Our
choice of the word “interface” could also have led to confusion,
as our post-interview data suggests that what some Qiskit partici-
pants were rating were Jupyter notebooks. Participants may also be
inclined to blame themselves; for instance, P23 appeared to be strug-
gling with Python and error messages, but in the post-interview did
not attribute his frustrations to the interface, even when pressed.

7.3 Other observations
By contrast to Notate participants’ reliance on touch and pen in-
teractions and frequent use of the scratch pad on harder tasks, the
Qiskit participants rarely used the scratch paper or touched the
screen, and only one of them used the stylus to scroll with the
scrollbar. Their means of interaction were the fold-out keyboard
and trackpad of the Surface, akin to typical programming practice.
Sometimes, a participant would be seen ready to write something
on the scratch paper (pencil up), but then would return to the key-
board. A few participants used trackpad gestures to zoom out, such
that they could see the entire notebook without scrolling.

Across all participants, Qiskit users relied heavily on the pro-
vided example code snippets, sometimes copying example code
almost verbatim before amending it for the task. As might be an-
ticipated, the types of errors Qiskit participants encountered were
also fundamentally different than Notate ones. Qiskit user errors
centered around indexing and array-out-of-bounds errors (missing
an index, going over by one, etc.). Users typically responded by
revising the index argument, sometimes seemingly guessing in mul-
tiple quick edit-run-revise cycles until the cell ran without incident
or gave the right output. By virtue of the notation, indexing errors
were entirely absent from the Notate condition.11

Near the end of the post-interview, we asked Qiskit participants
an interview question regarding a hypothetical drawing interface

11The idea that cumbersome indexing disappears in a diagrammatic notation aligns
with the rationale of Penrose and Coecke & Kissinger, who designed index-free nota-
tions for tensors and quantum mechanics, respectively [12, 52].

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

(they were not introduced to the Notate interface). Participants
generally hypothesized that they would prefer to type code instead.
When asked to expand, however, it materialized that their belief
stemmed from difficulties conceptualizing how drawing could de-
fine abstract circuits (i.e. over n inputs), with many assuming a
tedious copying of the entire n-ary diagram in Task 6 (e.g., P1:
“[Drawing] by hand?... I think that that would get out of hand so
quickly”). And, when pressed about how to express abstraction vi-
sually, some Qiskit participants appeared at a loss for words. They
could not imagine how that would be done. However, as a few par-
ticipants continued talking, they appeared to grow uncertain of the
solidness of their boundaries between programming and drawing.
P10 for instance, without being aware of the Notate condition or
ever seeing the interface, said:

[For] one of those abstract ones [circuits]... it’d have to be
some like combination of drawing with like, notation, or
something... But once you have that, then you’re moving
back into, like, the ‘code territory’... If we were to do this
completely, like in a ‘no code’ way, I’d probably have to
completely draw [the circuit], right? But once you start
thinking about ways to save time on that, like creating
notation to define this abstractness, or the repeatedness...
Technically, it’s code, right?12

When drawings have notation, they “move into,” almost invade,
the “territory” of code [15]. Since notational programming is, by de-
sign, meant to dissolve the “territories” of textual, keyboard-centric
IDEs and handwritten drawings/notation, were such systemswidely
adopted, it is possible that the material assumptions underlying the
concepts of “code” and “programming” would shift.

7.4 Limitations of evaluation
Our study had numerous limitations. By far the biggest limitation is
that Notate participants were novices, and could not conceptualize
how such an interface might fit into a real quantum programming
workflow. Future participatory design work with expert quantum
programmers may enrich and amend our design. Second, our choice
to recruit only those already experienced with Python and Jupyter
notebooks may have biased them towards those familiar interfaces
[10, 27]. Had we chosen participants with no knowledge of Python
and Jupyter, it is an open question how the interfaces would com-
pare.13 Third, we acknowledge that our comparison is limited to
a typewritten API which might be improved in the future (say, to
make using custom subcircuits more intuitive), and comparisons to
other typewritten APIs may yield different results. Finally, because
of our task design, Notate users did not encounter workflows that
involved equal ratios of handwritten and typewritten coding. In

12During this study, the audio transcript reveals that the interviewer never mentioned
the term “notation”: the participant came up with it on their own.
13There may also be no best design for a comparative study, however. According
to Lieberman, comparative studies are only preferable when “changing the variable
doesn’t change the paradigm of interaction... when the alternatives being tested are
radically different from each other, you’ve got a problem” [43]. Greenberg & Buxton
echoed Lieberman’s concerns, arguing that running comparative usability studies
may (sometimes) be “harmful” for evaluating interfaces that challenge entrenched
practices or norms [27]. They outline situations where either the interface is on the
cusp of feasibility, but still too prone to errors; or where participants hold strong biases
towards existing practices.

practice, we envision more equal cooperation between input modal-
ities. Future studies might explore tasks where participants learn
both a typewritten API and a corresponding handwritten notation.

8 DISCUSSION
Overall, our findings show that Notate users found our core inter-
action of implicit cross-context references intuitive. Moreover, all
Notate users were able to apply Qaw abstractions to solve tasks
3-5, and most were able to solve the final task, involving double
recursive definitions and at least one subcircuit, within the allotted
time. In addition, although Notate participants were introduced to
an entirely new notation, the slash-wire, in Task 3 –compared to
Qiskit participants who used familiar for loops –they were able to
complete the task significantly faster. This is all the more surpris-
ing since, usually, a portion of Notate participants’ task time was
spent wrangling recognition errors. Comparison of task times for
Notate vs. Qiskit conditions also provides evidence for a longstand-
ing contention by programming researchers studying “visual” vs.
“textual” notations: that which is “better” depends on the task at
hand, how the design of the notation affords or resists encoding a
particular solution, and the background and preferences of who is
trying to apply it [26, 68]. Taken collectively, these findings support
our “heterogenous” vision of notational programming –for designs
that mix modalities, instead of demanding one for all time [20, 58].
We now reflect on future directions, rationale behind some design
choices, and differences with GUIs.

8.1 Future directions and reflections on process
Our qualitative findings for Notate revealed that, while participants
could learn and apply Qaw abstractions, there was much room for
improvement to the interface design. Recognition rates, drawing
features (such as the lasso tool), task reference material, and espe-
cially debugging feedback could all be improved. The infrastructure
and standards around typewritten environments –linters, syntax
highlighting, debugging feedback, etc. –has evolved over decades,
and it stands to reason that handwritten programming could benefit
from similar innovations. In Notate, only recognition errors ‘threw
plots’ in their tracebacks, but UX-AI transparency principles [23]
suggest that seemingly-semantic errors should also throw plots
visualizing what the AI saw. Future work might explore best princi-
ples of building debugging toolchains for notational programming.

We also believe improvements can be made to our notation
design process. Much of our work was akin to research-through-
design, viewing our design artifact as an outcome “that can trans-
form the world from its current state to a preferred state” [73, p.
493] –relating to how participants currently associate “coding” with
the keyboard, versus (our intention) broadening this conception to
include pen-based input. Here, the process of trying to design and
implement a notational programming system may itself be a contri-
bution, and offer suggestions for future practice. One improvement
could be, before implementation, to run aWizard of Oz (WoZ) study
to examine how participants deploy a notation in practice, with
the intent to fold their feedback into a more finalized specification.
Another, more futuristic design is to leverage “evolving AI” [70] so
that a distributed notational system would evolve its notation in
response to how users actually use it, just as a non-computational

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

notation like Feynman diagrams evolved as it came into contact
with varied communities [36]. Relatedly, a future paper might cen-
ter the communication protocol mediating the two contexts, and
develop tools and guidelines for helping design domain-specific
notations and interpreters.14 Past work on multi-domain sketch
recognition by Alvarado & Davis required a (typewritten) hierar-
chical shape description language to specify new domains [1]; here
we might imagine combining deep learning-based recognition with
programming-by-example techniques.

One additional question was raised by the “trick” many Qiskit
participants used to solve Task 6 significantly faster than their No-
tate counterparts: the copying of one solution into a new notebook,
followed by a short edit-run-revise cycle. Future designs might sup-
port copying Canvas objects not just across notebooks, but facilitate
copying only parts of the drawing, or editing a finished drawing.
Also, this raises a question of how one might design notations with
localized copy-and-paste operations in mind.

8.2 Rationale behind turns of phrase
The astute reader might wonder why we used terms like “notational
programming system” throughout this piece, instead of more com-
mon phrases like “sketch-based interfaces.” Developers of sketching
interfaces typically aim to support early-stage design processes and
often take a user-centered design approach, aiming to recognize
rather than reconfigure existing practice. For instance, Buxton de-
fines sketching as any design process where the output is quick,
plentiful, disposable, ambiguous, and with minimal detail [7]. Sup-
porting sketching is an important area, as decades of rich research
can attest. However, we preferred to use terms like “notational”
and “pen-based” to, in part, clarify that we do not intend notational
programming to support or augment early-stage sketching; i.e.,
it is not a replacement for paper and pen. Rather, notating is in-
tended to be closer to the end product of user’s thought processes,
more like typewritten code. Said differently, it is our intent that
handwritten input requires a certain precision, just as typing on a
keyboard does. That does not mean we should dismiss poor recogni-
tion rates, but rather –taking principles from AI research –calibrate
user expectations appropriately [23].

Another key break with our approach was a focus on notation
design and the ‘reconfiguration’ of user practices present in the
PL community but often avoided in the framing of sketch recog-
nition research. Per its name, sketch recognition research tends to
proceed from a user-centered design perspective that focuses on
recognizing existing notations and design practices (e.g., molec-
ular diagrams, flow charts, or UI sketches), rather than taking a
cultural-historical approach which conceives of writing practices
as produced through a dialectic between human needs and material
affordances [4, 16]. We perceive the goal of notational programming
as not only recognition, but asking how we might reconfigure and
extend existing notations –or indeed create new ones –in dialogue
with new computational powers.

14For instance, although we have chosen an “implicit” binding protocol here –where
a subset of typewritten variable names are implicitly imported into the handwritten
context and vice-versa –perhaps some developers may favor more “explicit” bindings,
involving passing more arguments to the interpreter.

8.3 Handwriting interfaces vs. GUIs
A recurring question some people have asked, when first hearing
of our system, is: “why not use a GUI?” Surely, they reason, an
embedded GUI for the case of quantum circuits is preferable to our
solution –less prone to ambiguous errors, more immediate, editable,
etc. And for certain purposes they may be right.15 Our design was
instead meant to be partly critical, i.e. “design that asks carefully
crafted questions and makes us think” [18, p. 58]: we purposely
avoided the tight feedback loops present in on-line sketch-based
interfaces [57], seeking to challenge participants’ norms and values
around programming (if a feedback loop isn’t required, then, tech-
nically, they could be writing significant parts of their program on
a piece of paper). Our goal was not universally faster or better prod-
ucts [18, p. 58], but to cause users to pause, to provoke or question
their typical “ways of doing” programming.16 From our interviews,
it seems that some participants’ understandings of coding were
indeed broached or called into question after interacting with our
system. Nevertheless, there may be practical benefits to our vision
of the notational paradigm that we now highlight: its shifting of
front-end to back-end implementations, its altering of the “posture”
of programmers, and its fluidity.

First, a single drawing interface (and protocol for reading its
contents) means that implementers need not develop, embed, and
test a new GUI widget for each new domain. Yes, new interpreters
will need to be defined, but those methods need not unduly concern
themselves with the particulars of the front-end interface. Although
today it can be costly and time-consuming to iterate ML models
[70], as these processes are streamlined, we can imagine future
support tools that ease the process of developing said recognizers,
say with transfer learning and few-shot examples.

Second, a GUI often –although not exclusively –assumes the
familiar mouse/trackpad and keyboard setup. The way that laptops
and desktop PCs constrain the body is often an assumed, and not
reflected on, aspect of programming practice. Notational program-
ming may change the paradigm of interaction towards pen-centric
input, such that, hypothetically, one could be writing significant
parts of a program on an e-Ink tablet. The body (posture, move-
ments, even aspects of cognition) is constrained differently based
on these setups, and some of our participants even reflected on this.

Third, and unlike domain-specific GUIs, because the core data
for the notational paradigm are images, they can be copy and pasted
and passed around at will, using existing, out-of-the-box infras-
tructure available on all operating systems. The image effectively
is the program, or at least part of it. Were there an abundance of
community-built interpreters, one could copy images from white-
boards, paper, or online resources, that then load them directly into
data structures within a typewritten workflow. Like Mol’s charac-
terization of the Zimbabwe Bush Pump, wemight say the notational
programming interface aims to be a “fluid technology,” in that an
image affords “a flexibility that allows it to travel almost anywhere”
[14, p. 226]. What it sacrifices for a GUI’s “firmness,” in Mol’s terms,
it may make up for in versatility and mobility.

15For instance, we would encourage IBM integrating Qaw abstractions like the slash-
wire into their quantum circuit GUI Composer.
16Computer “coding” and “programming” are terms with a relatively recent history;
their meanings have never been pregiven, fixed or static but have evolved over time.

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

9 CONCLUSION
In this paper, we explored a prototype notational programming
system embedded in notebook environment. We introduced sev-
eral principles of notational programming regarding how a host
environment (here, typewritten language and IDE) communicates
with a pen-based interface for handwritten notation. As a case
study, we then developed an abstract notation to writing quantum
circuits, Qaw, and built a deep learning-powered interpreter of a
subset of the Qaw notation. Interestingly, three Notate participants
seemed to assume our in-line canvases shipped as a standard feature
of Jupyter notebooks, and nearly all had no trouble grasping the
concept of referencing typewritten variables in handwritten code,
suggesting that future users would find our core concept intuitive.
Such blending between the “textual” and the “visual” might also
work towards shifting cultural values and boundary work around
what “programming” entails. However, more work is needed on
the infrastructure supporting notational programming –debugging
tools, and designs that manage or mitigate the mode-switching
between keyboard and pen.

ACKNOWLEDGMENTS
The first author would like to thank friends and colleagues whose
conversations over the years contributed to the ideas in this paper:
Sha Xin Wei, Dietrich Geisler, Kimberly Baum, and Matthew Law.

REFERENCES
[1] Christine Alvarado and Randall Davis. 2007. SketchREAD: A Multi-Domain

Sketch Recognition Engine. In ACM SIGGRAPH 2007 Courses (San Diego, Cali-
fornia) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY,
USA, 34–es. https://doi.org/10.1145/1281500.1281545

[2] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding Inter-
active Visual Syntax to Textual Code. Proc. ACM Program. Lang. 4, OOPSLA,
Article 222 (Nov 2020), 28 pages. https://doi.org/10.1145/3428290

[3] Georg Apitz and François Guimbretière. 2004. CrossY: A Crossing-Based Drawing
Application. In Proceedings of the 17th Annual ACM Symposium on User Interface
Software and Technology (Santa Fe, NM, USA) (UIST ’04). Association for Com-
puting Machinery, New York, NY, USA, 3–12. https://doi.org/10.1145/1029632.
1029635

[4] Ian Arawjo. 2020. To Write Code: The Cultural Fabrication of Programming
Notation and Practice. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. Association for Computing Machinery, New York, NY,
USA, 1–15. https://doi.org/10.1145/3313831.3376731

[5] Zahra Ashktorab, Justin D. Weisz, and Maryam Ashoori. 2019. Thinking Too
Classically: Research Topics in Human-Quantum Computer Interaction. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300486

[6] Marat Boshernitsan and Michael Sean Downes. 2004. Visual programming lan-
guages: A survey. Citeseer.

[7] Bill Buxton. 2010. Sketching user experiences: getting the design right and the right
design. Morgan kaufmann.

[8] Arnab Chakraborty. 2011. QuECT: a new quantum programming paradigm.
arXiv preprint arXiv:1104.0497 (2011).

[9] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. Association for Computing Machinery, New York,
NY, USA, 1–12. https://doi.org/10.1145/3313831.3376729

[10] Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L Wise, Celeste
Barnaby, Joshua Sunshine, Jonathan Aldrich, and Brad A Myers. 2021. PLIERS:
a process that integrates user-centered methods into programming language
design. ACM Transactions on Computer-Human Interaction (TOCHI) 28, 4 (2021),
1–53.

[11] Michael Coblenz, Michelle L. Mazurek, and Michael Hicks. 2021. Does the Bronze
Garbage Collector Make Rust Easier to Use? A Controlled Experiment. CoRR
abs/2110.01098 (2021). arXiv:2110.01098 https://arxiv.org/abs/2110.01098

[12] Bob Coecke and Aleks Kissinger. 2017. Picturing Quantum Processes. Cambridge
University Press.

[13] Randall Davis. 2007. Magic paper: Sketch-understanding research. Computer 40,
9 (2007), 34–41.

[14] Marianne De Laet and Annemarie Mol. 2000. The Zimbabwe bush pump: Me-
chanics of a fluid technology. Social studies of science 30, 2 (2000), 225–263.

[15] Gilles Deleuze and Félix Guattari. 1987. A thousand plateaus, trans. Brian Mas-
sumi.

[16] Paul Dourish. 2017. The stuff of bits: An essay on the materialities of information.
MIT Press.

[17] Wenxiao Du. 2012. Code Runner: Solution for Recognition and Execution of Hand-
written Code. Technical Report. Stanford University. 1–5 pages.

[18] Anthony Dunne and Fiona Raby. 2001. Design noir: The secret life of electronic
objects. Springer Science & Business Media.

[19] Thomas O Ellis, John F Heafner, and William L Sibley. 1969. The GRAIL Project:
An experiment in man-machine communications. Technical Report. RAND Corpo-
ration.

[20] Martin Erwig and Bernd Meyer. 1995. Heterogeneous visual languages-
integrating visual and textual programming. In Proceedings of Symposium on
Visual Languages. IEEE, 318–325.

[21] Craig Gidney. 2017. Quirk: Quantum Circuit Simulator. https://algassert.com/
quirk.

[22] Herman H. Goldstine and John Von Neumann. 1947. Planning and coding of
problems for an electronic computing instrument. Technical Report. Moore School
of Electrical Engineering, University of Pennsylvania.

[23] Google. 2019. People + AI Guidebook. https://pair.withgoogle.com/guidebook/.
[24] Google Quantum AI. 2022. Cirq. https://quantumai.google/cirq.
[25] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and

Benoît Valiron. 2013. Quipper: A Scalable Quantum Programming Language.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Seattle, Washington, USA) (PLDI ’13). Association for
Computing Machinery, New York, NY, USA, 333–342. https://doi.org/10.1145/
2491956.2462177

[26] Thomas RG Green and Marian Petre. 1992. When visual programs are harder to
read than textual programs. In Human-Computer Interaction: Tasks and Organisa-
tion, Proceedings ECCE-6 (6th European Conference Cognitive Ergonomics), Vol. 57.
Citeseer.

[27] Saul Greenberg and Bill Buxton. 2008. Usability Evaluation Considered Harmful
(Some of the Time). In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Florence, Italy) (CHI ’08). Association for Computing Ma-
chinery, New York, NY, USA, 111–120. https://doi.org/10.1145/1357054.1357074

[28] Mark D. Gross and Ellen Yi-Luen Do. 1996. Ambiguous Intentions: A Paper-like
Interface for Creative Design. In Proceedings of the 9th Annual ACM Symposium
on User Interface Software and Technology (Seattle, Washington, USA) (UIST ’96).
Association for Computing Machinery, New York, NY, USA, 183–192. https:
//doi.org/10.1145/237091.237119

[29] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119.

[30] Tracy Hammond and Randall Davis. 2007. LADDER, a Sketching Language
for User Interface Developers. In ACM SIGGRAPH 2007 Courses (San Diego,
California) (SIGGRAPH ’07). Association for Computing Machinery, New York,
NY, USA, 35–es. https://doi.org/10.1145/1281500.1281546

[31] Rebecca L. Hao and Elena L. Glassman. 2020. Approaching Polyglot Programming:
What Can We Learn from Bilingualism Studies?. In 10th Workshop on Evaluation
and Usability of Programming Languages and Tools (PLATEAU 2019) (OpenAc-
cess Series in Informatics (OASIcs), Vol. 76), Sarah Chasins, Elena L. Glassman,
and Joshua Sunshine (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 1:1–1:7. https://doi.org/10.4230/OASIcs.PLATEAU.2019.1

[32] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300500

[33] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 281–
292. https://doi.org/10.1145/3332165.3347925

[34] IBM. 2022. Qiskit Textbook: Learn Quantum Computation using Qiskit. https:
//qiskit.org/textbook/preface.html.

[35] Gabe Johnson, Mark D Gross, Jason Hong, and Ellen Yi-Luen Do. 2008. Computa-
tional Support for Sketching in Design: A Review. Human–Computer Interaction
2, 1 (2008), 1–93.

[36] David Kaiser. 2009. Drawing theories apart. University of Chicago Press.
[37] DaYe Kang, Tony Ho, Nicolai Marquardt, Bilge Mutlu, and Andrea Bianchi.

2021. ToonNote: Improving Communication in Computational Notebooks
Using Interactive Data Comics. In Proceedings of the 2021 CHI Conference on

https://doi.org/10.1145/1281500.1281545
https://doi.org/10.1145/3428290
https://doi.org/10.1145/1029632.1029635
https://doi.org/10.1145/1029632.1029635
https://doi.org/10.1145/3313831.3376731
https://doi.org/10.1145/3290605.3300486
https://doi.org/10.1145/3313831.3376729
https://arxiv.org/abs/2110.01098
https://arxiv.org/abs/2110.01098
https://algassert.com/quirk
https://algassert.com/quirk
https://pair.withgoogle.com/guidebook/
https://quantumai.google/cirq
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1145/237091.237119
https://doi.org/10.1145/237091.237119
https://doi.org/10.1145/1281500.1281546
https://doi.org/10.4230/OASIcs.PLATEAU.2019.1
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3332165.3347925
https://qiskit.org/textbook/preface.html
https://qiskit.org/textbook/preface.html

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Associa-
tion for Computing Machinery, New York, NY, USA, Article 727, 14 pages.
https://doi.org/10.1145/3411764.3445434

[38] Laewoo Kang and Steven Jackson. 2021. Tech-Art-Theory: Improvisational Meth-
ods for HCI Learning and Teaching. Proc. ACM Hum.-Comput. Interact. 5, CSCW1,
Article 82 (Apr 2021), 25 pages. https://doi.org/10.1145/3449156

[39] Mary Beth Kery, Donghao Ren, FredHohman, DominikMoritz, KanitWongsupha-
sawat, and Kayur Patel. 2020. Mage: Fluid Moves Between Code and Graphical
Work in Computational Notebooks. In Proceedings of the 33rd Annual ACM Sym-
posium on User Interface Software and Technology. Association for Computing Ma-
chinery, New York, NY, USA, 140–151. https://doi.org/10.1145/3379337.3415842

[40] James A. Landay and Brad A. Myers. 1995. Interactive Sketching for the Early
Stages of User Interface Design. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM
Press/Addison-Wesley Publishing Co., USA, 43–50. https://doi.org/10.1145/
223904.223910

[41] James A. Landay and Brad A. Myers. 2001. Sketching interfaces: toward more
human interface design. Computer 34, 3 (2001), 56–64. https://doi.org/10.1109/2.
910894

[42] Chuanjun Li, Timothy S Miller, Robert C Zeleznik, and Joseph J LaViola Jr. 2008.
AlgoSketch: Algorithm Sketching and Interactive Computation. SBIM 8 (2008),
175–182.

[43] Henry Lieberman. 2003. The Tyranny of Evaluation. ACM CHI Fringe (2003).
[44] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay. 2000. DENIM:

Finding a Tighter Fit between Tools and Practice for Web Site Design. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems (The
Hague, The Netherlands) (CHI ’00). Association for Computing Machinery, New
York, NY, USA, 510–517. https://doi.org/10.1145/332040.332486

[45] Microsoft. 2018. Sketch2Code. https://www.microsoft.com/en-us/ai/ai-lab-
sketch2code.

[46] Dhawal Mujumdar, Manuel Kallenbach, Brandon Liu, and Björn Hartmann. 2011.
Crowdsourcing Suggestions to Programming Problems for Dynamic Web Devel-
opment Languages. In CHI ’11 Extended Abstracts on Human Factors in Comput-
ing Systems (Vancouver, BC, Canada) (CHI EA ’11). Association for Computing
Machinery, New York, NY, USA, 1525–1530. https://doi.org/10.1145/1979742.
1979802

[47] Theresa O’Connell, Chuanjun Li, Timothy S. Miller, Robert C. Zeleznik, and
Joseph J. LaViola. 2009. A Usability Evaluation of AlgoSketch: A Pen-Based
Application for Mathematics. In Proceedings of the 6th Eurographics Symposium
on Sketch-Based Interfaces and Modeling (New Orleans, Louisiana) (SBIM ’09).
Association for Computing Machinery, New York, NY, USA, 149–157. https:
//doi.org/10.1145/1572741.1572767

[48] Cyrus Omar and Jonathan Aldrich. 2018. Reasonably Programmable Literal
Notation. Proc. ACM Program. Lang. 2, ICFP, Article 106 (Jul 2018), 32 pages.
https://doi.org/10.1145/3236801

[49] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling Typed Holes with Live GUIs. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery,
New York, NY, USA, 511–525. https://doi.org/10.1145/3453483.3454059

[50] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live
Functional Programming with Typed Holes. Proc. ACM Program. Lang. 3, POPL,
Article 14 (Jan 2019), 32 pages. https://doi.org/10.1145/3290327

[51] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core
Language for Quantum Circuits. In Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (Paris, France) (POPL ’17). As-
sociation for Computing Machinery, New York, NY, USA, 846–858. https:
//doi.org/10.1145/3009837.3009894

[52] Roger Penrose. 1971. Applications of negative dimensional tensors. Combinatorial
mathematics and its applications 1 (1971), 221–244.

[53] Mathys Rennela and Sam Staton. 2017. Classical Control, Quantum Circuits
and Linear Logic in Enriched Category Theory. CoRR abs/1711.05159 (2017).
arXiv:1711.05159 http://arxiv.org/abs/1711.05159

[54] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Ex-
planation in Computational Notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3173574.3173606

[55] Mark Santolucito. 2021. Human-in-the-Loop Program Synthesis for Live Coding.
In Proceedings of the 9th ACM SIGPLAN International Workshop on Functional Art,
Music, Modelling, and Design (Virtual, Republic of Korea) (FARM 2021). Association
for Computing Machinery, New York, NY, USA, 47–53. https://doi.org/10.1145/
3471872.3472972

[56] Nazmus Saquib et al. 2020. Embodied mathematics by interactive sketching. Ph. D.
Dissertation. Massachusetts Institute of Technology.

[57] Nazmus Saquib, Rubaiat Habib Kazi, Li-yi Wei, Gloria Mark, and Deb Roy. 2021.
Constructing Embodied Algebra by Sketching. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).

Association for Computing Machinery, New York, NY, USA, Article 428, 16 pages.
https://doi.org/10.1145/3411764.3445460

[58] Lucy Suchman. 2002. Located accountabilities in technology production. Scandi-
navian journal of information systems 14, 2 (2002), 7.

[59] Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets, and
Matthias Jarke. 2019. Eve: A Sketch-Based Software Prototyping Workbench.
In Extended Abstracts of the 2019 CHI Conference on Human Factors in Comput-
ing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing
Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3290607.3312994

[60] Ivan E. Sutherland. 1963. Sketchpad, a Man-Machine Graphical Communication
System. Ph. D. Dissertation. Massachusetts Institute of Technology, Cambridge,
MA.

[61] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. 2018. Q# Enabling Scalable Quantum Computing and Development
with a High-level DSL. In Proceedings of the Real World Domain Specific Languages
Workshop 2018. 1–10.

[62] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on
Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22).
Association for Computing Machinery, New York, NY, USA, Article 332, 7 pages.
https://doi.org/10.1145/3491101.3519665

[63] John Von Neumann. 1993. First Draft of a Report on the EDVAC. IEEE Annals of
the History of Computing 15, 4 (1993), 27–75.

[64] April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How
Data Scientists Use Computational Notebooks for Real-Time Collaboration. Proc.
ACM Hum.-Comput. Interact. 3, CSCW, Article 39 (Nov 2019), 30 pages. https:
//doi.org/10.1145/3359141

[65] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D.
Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. 2022. Documentation Matters:
Human-Centered AI System to Assist Data Science Code Documentation in
Computational Notebooks. ACM Trans. Comput.-Hum. Interact. 29, 2, Article 17
(Jan 2022), 33 pages. https://doi.org/10.1145/3489465

[66] Danli Wang, Yang Zhang, Tianyuan Gu, Liang He, and Hongan Wang. 2012.
E-Block: A Tangible Programming Tool for Children. In Adjunct Proceedings
of the 25th Annual ACM Symposium on User Interface Software and Technology
(Cambridge, Massachusetts, USA) (UIST Adjunct Proceedings ’12). Association
for Computing Machinery, New York, NY, USA, 71–72. https://doi.org/10.1145/
2380296.2380327

[67] DavidWeintrop. 2019. Block-Based Programming in Computer Science Education.
Commun. ACM 62, 8 (Jul 2019), 22–25. https://doi.org/10.1145/3341221

[68] Kirsten N. Whitley. 1997. Visual programming languages and the empirical
evidence for and against. Journal of Visual Languages & Computing 8, 1 (1997),
109–142.

[69] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
Association for Computing Machinery, New York, NY, USA, 152–165. https:
//doi.org/10.1145/3379337.3415851

[70] Qian Yang, Aaron Steinfeld, Carolyn Rosé, and John Zimmerman. 2020. Re-
Examining Whether, Why, and How Human-AI Interaction Is Uniquely Difficult
to Design. In Proceedings of the 2020 CHI Conference on Human Factors in Comput-
ing Systems. Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376301

[71] Anna Zeng and Will Crichton. 2019. Identifying barriers to adoption for Rust
through online discourse. arXiv preprint arXiv:1901.01001 (2019).

[72] Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool
for Creating Interactive Scenes in Virtual Reality. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. Association
for Computing Machinery, New York, NY, USA, 342–353. https://doi.org/10.
1145/3379337.3415824

[73] John Zimmerman, Jodi Forlizzi, and Shelley Evenson. 2007. Research through
Design as a Method for Interaction Design Research in HCI. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (San Jose, California,
USA) (CHI ’07). Association for Computing Machinery, New York, NY, USA,
493–502. https://doi.org/10.1145/1240624.1240704

https://doi.org/10.1145/3411764.3445434
https://doi.org/10.1145/3449156
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/223904.223910
https://doi.org/10.1145/223904.223910
https://doi.org/10.1109/2.910894
https://doi.org/10.1109/2.910894
https://doi.org/10.1145/332040.332486
https://www.microsoft.com/en-us/ai/ai-lab-sketch2code
https://www.microsoft.com/en-us/ai/ai-lab-sketch2code
https://doi.org/10.1145/1979742.1979802
https://doi.org/10.1145/1979742.1979802
https://doi.org/10.1145/1572741.1572767
https://doi.org/10.1145/1572741.1572767
https://doi.org/10.1145/3236801
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://arxiv.org/abs/1711.05159
http://arxiv.org/abs/1711.05159
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3471872.3472972
https://doi.org/10.1145/3471872.3472972
https://doi.org/10.1145/3411764.3445460
https://doi.org/10.1145/3290607.3312994
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3359141
https://doi.org/10.1145/3359141
https://doi.org/10.1145/3489465
https://doi.org/10.1145/2380296.2380327
https://doi.org/10.1145/2380296.2380327
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/3313831.3376301
https://doi.org/10.1145/3379337.3415824
https://doi.org/10.1145/3379337.3415824
https://doi.org/10.1145/1240624.1240704

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

A ELEMENTS OF QAW NOTATION
Here we describe components and operations of the current iter-
ation of the Qaw notation. Since Qaw is handwritten, diagrams
have been drawn to represent each operation. In practice, one must
implement a suitable interpreter for the notation, conceptually sim-
ilar to a parser for a typewritten language. Our implementation
leverages a combination of deep learning and traditional computer
vision techniques, but we omit those details here. This section de-
scribes the components that make up quantum circuit notation
and how they may be combined to denote larger circuits. For each
component we note to what extent it was implemented for the user
study discussed in the main text.

A.0.1 Circuit Definition. Similar to logic circuits, quantum cir-
cuits are built from quantum logic gates (drawn as blocks), con-
nected by wires (lines). Qaw facilitates abstraction by allowing
blocks to represent either single gates, or a larger defined circuit.
This allows users to build up complex circuits from simpler ones.
For instance (draw output produced from Qiskit API):

Implementation in study: One can type a variable A, B, or C and
set it equal to a circuit, then use that variable in later handwritten
gates. Although not used in the tasks, letters D-F and U were also
supported. One could not handwrite the left-hand-side and equals
symbol, however.

A.0.2 Connection and Initialization. Thewires connecting gates
may represent either traditional bits, or qubits, and are differen-
tiated by their starting inputs. A traditional bit wire starts with
circles, while a qubit wire starts with a ket (|0⟩). This ket notation
is standard in the quantum computing literature, with |0⟩, |1⟩, |+⟩,
and |−⟩ being common examples. See Figure 6 for an example. Qaw
supports common Greek symbols ψ , ϕ and ω with an expected
complex type, such that one might type psi (or use the symbol) in
Python code to initialize a qubit within the handwritten context. If
the wire initialized is a bundle (see below), then this value would
be repeated over the argument. A list of complex numbers would
similarly spread onto the qubits associated with the init wire.

Implementation in study: Not implemented. A version of our
multi-object detector parsed kets |0⟩ and |1⟩, although the feature
was removed for the user study, to raise recognition rates.

A.0.3 Measure. Like in a logic circuit, the value of a traditional
bit can be read directly from the wire representing it. But the value

of a qubit must be explicitlymeasured. The notation for measure is a
stopper to an output, –|. The usual icon for measure is cumbersome
to draw, and potentially prone to recognition errors; here, we alter
traditional notation for brevity, since measures are common. If
one needs to control later gates based on the output of a measure,
as in the quantum teleportation circuit [25], they may write –|-|–
(double-slash), where the right-hand line now carries a classical bit.

Implementation in study: Not supported.

A.0.4 Wire bundling and bundle types. Qaw supports bundling
wires together with slash notation. Wire bundles are “concrete” if
they specify a exact (integer) number for the “size” of the bundle
(number of wires):

Wire bundles are “abstract” or “variable-sized” if their size is
specified with a variable like n:

In Qaw, we allow for (and encourage) omitting a parameter name
above the slash, where otherwise there would be no ambiguity. The
below is equivalent to the above:

A slash into a common gate such as H, X, Y, or Z “spreads” the
gate across all n qubits in the bundle, as one may see in Task 3.
The spreading performs the tensor product of the matrix, e.g. H⊗n ,
without the user having to write the cumbersome and redundant
⊗n. In addition, for induction purposes, we allow for a “zero-size”
bundle that vanishes following special rewrite rules:

Implementation in study: Support for circuits with at most one
input bundle in their input wires. Support for zero-sized bundles
upon recursive definition. No support for writing symbols above
the slash.

A.0.5 Swappingwires. Because the notation is handwritten, wires
do not have to be strictly straight lines. Rather, lines can curve and
cross as needed to represent swapping wires:

Implementation in study: Supported.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

A.0.6 Splitters, bundlers, and rearrangers. Much of the power
of our notation rests in the combination of variable-sized wire
bundles and recursion. Splitters, bundlers, and rearrangers function
in a way similar to destructuring lists in functional programming
languages (think hd::tl in ML-family languages, or car and cdr
in Lisp derivatives). These abstractions are represented by blank
gates (identity gate) with at most one bundle in their output. From
left to right: splitters pulling off individual wires from bundles;
bundlers take a number of input wires and bundle them together;
and rearrangers combine features of both:

Splitters, bundlers, and rearrangers may be used implicitly in gate
definitions. The sizes of the output wires of unitary gates are in-
ferred from the input and need not always be explicitly specified.
For example, here are some inference rules for output sizes given
the inputs:

Output sizes can only be inferred in cases where there is no
ambiguity. For instance, the last example with two output wires
would be in error if the top output wire was not slashed to indicate
its abstract size: there would be ambiguity about which output wire
was the abstract one.

Implementation in study: Supported for at most one wire bundle
in the inputs. Our parser performs size inference checks that threw
errors or warnings when a mismatch or ambiguity occurred.

A.0.7 Control bit patterns. Quantum circuits often use one bit
(or qubit) to control another. This is represented by intersecting the
two wires and circling the intersection. These intersections may
represent gates that specify exactly how the control operates (e.g.
CNOT, Toffoli). The slash notation discussed above allows Qaw
to easily generalize control gates to common circuit patterns. For
example, we can easily represent higher-order control gates (top),
or repeat 2-qubit gates in a staircase pattern by slashing the control
line in the direction of the staircase (bottom):

If both wires are bundles, one can specify different staircase
patterns by applying multiple slashes on the control line:

Implementation in study: Basic control gates CX and CZ were
supported. Controlling a custom gate A, B, C or common gates H, Z,
X, Y, and T were also supported, including for multiple control bits;
however, none of the tasks asked for this. Feeding a wire bundle
into a CX and CZ gate to represent multi-Controlled Z and X gates
was supported. Slashing the control line itself to generate staircase
patterns was not supported. This was intentional, as supporting
slashing of a control wire might have reduced the difficulty of Task
6.

A.0.8 Recursive definition and pattern matching. Circuits
can be defined recursively, with base cases identified from pat-
tern matching. The number of input wires to the recursive use of
a circuit (right-hand side) must be less than the number in a left-
hand-side definition. In the context of a typewritten environment,
one can simply type the left-hand-side as a gate name referred to
in its definition:

Note that in the above example, the base case is implicit from
the recursive part of the definition, since the bottom wire bundle,
as well as the reference to C , vanishes when its size = 0. The code
above generates the pattern:

for n>1 inputs. In general, for ease of definition we define the
default base case of any circuit C as the identity gate. This default

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

allows the base case to go unspecified in many recursive definitions,
saving space and effort.

Implementation in study: Supported, when left-hand-side is a
typewritten variable A, B, or C. No current support for handwritten
left-hand-sides or alternative base cases.

A.0.9 Repeat section of circuit k times. Repetition of subsec-
tions of a circuit is indicated by drawing a box around the region
one wishes to repeat. Below the box, one may either write a num-
ber, or lowercase characters such as k to import values from the
typewritten context (Fig. 7). Note that if one writes the size of a
bundle, say n, they may also use this inner value elsewhere in the
diagram, including in a repeated section (i.e., to make a circuit with
n inputs repeat a subsection n times).

Implementation in study: Not supported.

A.0.10 Controlling gates with classical bits. One may control
gates with classical bits by drawing a circle (unattached to a qubit
line) and controlling the gate with a vertical line. Inside the circle
one may indicate 0 or 1 or, more interestingly, lowercase alphabetic
symbols defined in typewritten code, a, b or c , as 0 or 1 integers.
E.g.:

Implementation in study: A version of our implementation sup-
ported this operation, but we removed it for the study.

A.0.11 Reversal / uncomputation. Uncomputation, an opera-
tion often used to clean up ancilla qubits, is indicated by writing a
line above a custom gate symbol such as A. The line should not be
touching the gate box.

Implementation in study: Not supported.

A.1 Current limitations
Where Qaw succeeds is constructing parts of circuits which are not
dependent on classical data (e.g., teleportation). Where it currently
struggles or fails is when classical data is encoded into qubit op-
erations (e.g., encoding the oracle in a 3-SAT problem).17 or when
parametrized operations are repeated over an argument, as in:

Notational Programming for Notebook Environments UIST ’22, October 29-November 2, 2022, Bend, OR, USA

allows the base case to go unspecified in many recursive definitions,
saving space and effort.

Implementation in study: Supported, when left-hand-side is a
typewritten variable A, B, or C. No current support for handwritten
left-hand-sides or alternative base cases.

A.0.9 Repeat section of circuit 𝑘 times. Repetition of subsec-
tions of a circuit is indicated by drawing a box around the region
one wishes to repeat. Below the box, one may either write a num-
ber, or lowercase characters such as 𝑘 to import values from the
typewritten context (Fig. 7). Note that if one writes the size of a
bundle, say 𝑛, they may also use this inner value elsewhere in the
diagram, including in a repeated section (i.e., to make a circuit with
𝑛 inputs repeat a subsection 𝑛 times).

Implementation in study: Not supported.

A.0.10 Controlling gates with classical bits. One may control
gates with classical bits by drawing a circle (unattached to a qubit
line) and controlling the gate with a vertical line. Inside the circle
one may indicate 0 or 1 or, more interestingly, lowercase alphabetic
symbols defined in typewritten code, 𝑎, 𝑏 or 𝑐 , as 0 or 1 integers.
E.g.:

Implementation in study: A version of our implementation sup-
ported this operation, but we removed it for the study.

A.0.11 Reversal / uncomputation. Uncomputation, an opera-
tion often used to clean up ancilla qubits, is indicated by writing a
line above a custom gate symbol such as A. The line should not be
touching the gate box.

Implementation in study: Not supported.

A.1 Current limitations
Where Qaw succeeds is constructing parts of circuits which are not
dependent on classical data (e.g., teleportation). Where it currently
struggles or fails is when classical data is encoded into qubit op-
erations (e.g., encoding the oracle in a 3-SAT problem).17 or when
parametrized operations are repeated over an argument, as in:

1 # Implement an approximate Hadamard

2 theta = np.pi/np.sqrt (2)

3 for j in range(n):

4 qc.rx(theta/n,qr[0])

5 qc.rz(theta/n,qr[0])

Future iterations of the notationmight address these issues. How-
ever, it may also be possible that typewritten coding is the best
solution for particular subtasks. By designing notational program-
ming to support “heterogenous” input methods, we intend for users
to switch between pen and keyboard interactions where they deem
appropriate.
17Although we can imagine some extensions. The implementation of certain oracles,
e.g. for Grover’s algorithm, may be generated from classical functions; thus, in an
extension to Qaw, the user might be able to define a classical function f in Python and
then reference it in place of the U in Fig. 7.

B TASK RATIONALE AND SOLUTIONS
For completeness, we list our six Tasks with the solutions, written
in Qaw notation. We provide rationale for each task, including
what concepts it introduces or tests. Each example solution was
drawn by one of our participants, depicting a range of styles. Where
circuits use abstract notation, we print example output for a specific
𝑛 inputs.

B.1 Task 1
The first task is a simple Bell State, |𝜙+⟩, chosen because it is the
“hello world” circuit of quantum computing. Participant P12’s solu-
tion is simply a copy of the example diagram:

B.2 Task 2
The second task involves copying a more complex “concrete” circuit
with four qubits, two control lines and three gates. The rationale
was to test the hypothesis that typewritten coding would be faster
for such larger concrete circuits, since they may require more time
to draw manually. The circuit itself has no particular meaning out-
side of the task. P4 drew the following:

B.3 Task 3
The third task is the generalized diffusion subcircuit of Grover’s
Algorithm, a famous quantum search algorithm. The diffusion sub-
circuit was chosen as a vehicle for introducing the slash-wire Qaw
notation, as it required the slash-wire to represent arbitrary 𝑛 in-
puts, but it was simple in structure enough to not require much
more knowledge beyond that. The Multi-Controlled-Z gate in the
middle also provided a opportunity to emulate “searching the doc-
umentation”: in both conditions’ task text, we did not explicitly
mention or explain this element of the solution. The component
was instead included on the reference sheet, so that participants
had to use the “documentation” to solve the task. P6’s solution:

Future iterations of the notationmight address these issues. How-
ever, it may also be possible that typewritten coding is the best
solution for particular subtasks. By designing notational program-
ming to support “heterogenous” input methods, we intend for users
to switch between pen and keyboard interactions where they deem
appropriate.
17Although we can imagine some extensions. The implementation of certain oracles,
e.g. for Grover’s algorithm, may be generated from classical functions; thus, in an
extension to Qaw, the user might be able to define a classical function f in Python and
then reference it in place of the U in Fig. 7.

B TASK RATIONALE AND SOLUTIONS
For completeness, we list our six Tasks with the solutions, written
in Qaw notation. We provide rationale for each task, including
what concepts it introduces or tests. Each example solution was
drawn by one of our participants, depicting a range of styles. Where
circuits use abstract notation, we print example output for a specific
n inputs.

B.1 Task 1
The first task is a simple Bell State, |ϕ+⟩, chosen because it is the
“hello world” circuit of quantum computing. Participant P12’s solu-
tion is simply a copy of the example diagram:

B.2 Task 2
The second task involves copying a more complex “concrete” circuit
with four qubits, two control lines and three gates. The rationale
was to test the hypothesis that typewritten coding would be faster
for such larger concrete circuits, since they may require more time
to draw manually. The circuit itself has no particular meaning out-
side of the task. P4 drew the following:

B.3 Task 3
The third task is the generalized diffusion subcircuit of Grover’s
Algorithm, a famous quantum search algorithm. The diffusion sub-
circuit was chosen as a vehicle for introducing the slash-wire Qaw
notation, as it required the slash-wire to represent arbitrary n in-
puts, but it was simple in structure enough to not require much
more knowledge beyond that. The Multi-Controlled-Z gate in the
middle also provided a opportunity to emulate “searching the doc-
umentation”: in both conditions’ task text, we did not explicitly
mention or explain this element of the solution. The component
was instead included on the reference sheet, so that participants
had to use the “documentation” to solve the task. P6’s solution:

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Arawjo, DeArmas, Roberts, Basu & Parikh

Setting num_inputs=8, the notation interpreter prints:

B.4 Task 4
The four task is a circuit that uses a subcircuit, defined in a previous
line. The circuit serves as a vehicle to introduce participants to
the idea of subcircuits and, in the Notate condition, implicit cross-
context referencing. The circuit is simple and has no particular
meaning outside the task. For Task 4, P3 wrote:

B.5 Task 5
The fifth task asks participants to generate an upward staircase pat-
tern of Z and Controlled-X gates. The pattern had to be defined for
n>1 inputs. The rationale was to introduce Notate users to recursive
definition, also requiring an implicit cross-context reference. The
circuit has no particular meaning outside the task, but was meant
to setup the concepts necessary for participants to solve Task Six.

P7’s solution:

Setting num_inputs=8, the notation interpreter prints:

B.6 Task 6
The sixth and final task asks participants to generate an upward
pattern of H and Controlled-Z gates that mirrors the structure of the
body of the generalized Quantum Fourier Transform (QFT) circuit
for n inputs. The rationale was to provide a harder task for Notate
participants that tested every concept they had learned before: gates
and control gates, the slash-wire notation, subcircuit definition, and
recursive definition. We did not expect all participants to be able to
solve this task. P5’s solution was depicted in Fig. 9.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming Systems and HCI
	2.2 Pen-based interfaces for programming

	3 What is Notational Programming?
	3.1 Definition and principles

	4 Case study: The QAW Quantum Circuit Notation
	4.1 Notation Design Process
	4.2 Examples: Superdense Coding & Grover's Algorithm
	4.3 Implementation

	5 Usability Evaluation
	6 Findings
	6.1 Conceptual (mis)understandings
	6.2 Error handling and debugging
	6.3 Interactions with hardware and software

	7 Comparison with a Typewritten API
	7.1 Participants
	7.2 Task by Task Performance
	7.3 Other observations
	7.4 Limitations of evaluation

	8 Discussion
	8.1 Future directions and reflections on process
	8.2 Rationale behind turns of phrase
	8.3 Handwriting interfaces vs. GUIs

	9 Conclusion
	Acknowledgments
	References
	A Elements of Qaw Notation
	A.1 Current limitations

	B Task Rationale and Solutions
	B.1 Task 1
	B.2 Task 2
	B.3 Task 3
	B.4 Task 4
	B.5 Task 5
	B.6 Task 6

