Computer Science and Global Economic Development:
Sounds Interesting, but is it Computer Science?

Tapan S. Parikh
UC Berkeley School of Information
Berkeley, CA, USA
parikh@berkeley.edu

OVERVIEW

Computer scientists have a long history of developing tools
useful for advancing knowledge and practice in other disci-
plines. More than fifty years ago, Grace Hopper said the
role of computers was “freeing mathematicians to do math-
ematics.” [5] Fred Brooks referred to a computer scientist as
a toolsmith, , making “things that do not themselves satisfy
human needs, but which others use in making things that
enrich human living.” [4]. Computational biologists have ap-
plied algorithmic techniques to process and understand the
deluge of data made possible by recent advances in molecu-
lar biology.

The proper way to approach this kind of research has

never been clear within Computer Science. The refrain “Sounds

interesting, but is it Computer Science?” is frequently heard.
In this paper I argue that it is crucial take an expansive
view of what Computer Science is. To do otherwise is to
cede a great deal of exciting, high-impact research territory
to others - research that is technically interesting and has
the potential to impact many lives. I believe the tension
felt by our community in conducting “technical research” for
global economic development provides a critical opportunity
to re-examine our conceptions of our discipline.

CS AND GLOBAL DEVELOPMENT

My students and I are focused on solving development
problems through the innovative use of computing technolo-
gies. What gets us out of bed in the morning is the opportu-
nity to have impact on individuals and communities living in
poverty in the developing world, and on the institutions that
serve them. This is not to say we are uninterested in techni-
cal problems — in fact, that is what we bring to the table —
the ability to design, implement and deploy computing sys-
tems within constraints not often felt in other contexts —
including limited user literacy, physical infrastructure and
organizational capacity. However, for us, solving technical
problems is a means to an end, not an end in itself. If we can
solve the latter without contributing anything hugely novel
to the former we would do (and have done) so.

Information and communication technologies (or, ICTs)
carry great promise for development practitioners and re-
searchers alike. Governments, NGOs and businesses see
them as tools to communicate with target communities and
their staff, to document and learn from their own interven-
tions, and from those working in the same region or on sim-
ilar issues. Recently, development economists have recog-
nized the paucity of applicable theory, turning their focus
on designing, identifying, and evaluating the impact of new

interventions from the bottom up, usually applying experi-
mental methods [1]. This includes prominent use of ICTs,
both as the focus of new interventions (mobile phones for
making markets more efficient [6], digital cameras to moni-
tor teacher attendance [2]), and as tools for understanding
their impact (PDAs and smartphones to conduct extensive
in-field surveys [8]). It is a wonderfully timely moment for
computer scientists to engage with the state-of-the-art in
development research and practice.

WHY ACADEMIA? WHY CS?

Why do this work in academia, and within the disci-
pline of Computer Science? There are several motivations.
Academia allows us to be more free, and take greater risks,
than other institutions. A commercial approach must (even-
tually, at least) be accountable to the tyranny of revenue and
profits. A government approach is constrained by bureau-
cracy, and by an inability to take risks, including learning
from (often, small-scale) experiments. In academia we are
able to experiment with new ideas, without being guaran-
teed of their popularity or success, and without knowing a
priori the long-term sustainability model.

The most compelling alternative is the non-profit sector
— non-governmental organizations, or NGOs. NGOs prob-
ably have the best record of ICT innovation in support of
rural economic development. The fact that NGOs have out-
distanced academia in an area with such potential for im-
portant technological innovation, with just a fraction of the
financial and especially human capital, stands as much as an
indictment of our record, as a justification of theirs. How-
ever, there are important limitations to their approach as
well. NGOs are usually not rewarded for nor capable of
methodological and empirical rigor. It is important to de-
velop tested theory and methods to inform technology design
and implementation, and that allow us to generalize to new
applications and operating contexts.

Why not do this work within other disciplines — such as
Public Health, Economics or Education? After all, aren’t
we solving their problems? Simply put — researchers in
these fields are most comfortable working with existing tech-
nologies, and not designing and implementing new ones.
They have neither the skills nor the training to pursue that
agenda, which could lead to entirely new opportunities and
innovations. Moreover, CS students can learn a lot from
doing this work, and are demanding opportunities to do so.
Freedom, innovation, scientific rigor and opportunities for
students — sounds like a good fit for academia!



BUT, IS IT COMPUTER SCIENCE?

It is time to return to that refrain “Sounds interesting, but
is it Computer Science?” The ontological (what objects and
phenomena we study) and epistemological (how we study
them) bases of the field have been the subject of recent
reflection. Ammon Eden distinguishes three paradigms of
computer science [3]. Of fundamental importance is the phe-
nomenon to be studied. The mathematics branch holds that
the objects to be studied are algorithms — abstract math-
ematical objects, properties of which can be determined
through deductive reasoning. The engineering branch holds
that what we study are running computing programs, which
are more complex, such that their properties can only be de-
termined by seeing how they perform after the fact.

The final branch is the scientific one, best captured by
Allen Newell and Herbert Simon — “Computer science is the
study of the phenomena surrounding computers... an empir-
ical discipline... an experimental science... like astronomy,
economics, and geology.” [7] These phenomena are not lim-
ited to algorithms, or even running programs (though they
traditionally have been within mainstream CS), but can in-
clude the human, social and physical processes surrounding
them. This interpretation is well-established within Human-
Computer Interaction (HCI). By accepting it across Com-
puter Science, especially as other areas are becoming in-
creasingly user and application-driven, we bring a consis-
tent philosophical basis to the field, including for engaging
with other disciplines. In this paradigm, we advance hy-
potheses (often in the form of new computing technologies
or applications, and/or their variants), and validate them
using experimental methods. Note that it is not only the
novelty of the technology that is relevant, but the impor-
tance and generalizability of the knowledge derived about
them. CS research that advances the goals of global devel-
opment, conducted in a scientific manner, for understanding
the appropriate design, implementation, cost, impact, and
usage of new computing technologies, clearly fits the bill.

One possible complaint is that if we stray too far from the
algorithm, the theory will be insufficient for explaining the
phenomena we study. I find this critique unsatisfying, and in
fact already a fait accompli. Is there only one set of theories
or concepts that underlies economics, biology or sociology?
Naturally, the study of complex systems requires drawing
upon multiple strands of theory, and drawing from other
disciplines. The proper study of computing can (and does)
draw upon theory from economics, sociology, psychology,
cognitive science, neuroscience, and other areas. We should
embrace this complexity, and learn from other disciplines,
or doom ourselves to decreasing relevance by ignoring the
panoply of interesting computing phenomena surrounding
us.

BROADER RAMIFICATIONS

New Research Problems

We can create opportunities to attack a number of impor-
tant, high-impact research problems for which we have the
necessary expertise and tools.

New Publishing Models

Doing good science requires conducting studies that can
take years to plan, implement and analyze. This is suitable

for publishing in journal format, as opposed to the confer-
ence format common in Computer Science. By publishing
more journal articles, we can improve our academic stand-
ing (for example, in tenure cases). By addressing problems
important to other domains, we can publish articles in their
conferences and journals also.

New Job Prospects

We can improve the job prospects of our students, both
within academia and outside of it. For example, economics
PhDs work in economics departments, business schools, schools
of public policy, for NGOs, multi-lateral agencies, or govern-
ments; depending on their interests and the kind of disser-
tation they have published.

New Funding Opportunities

We can approach new funding opportunities, in collabora-
tion with those disciplines that have experience with them.
Computer scientists increasingly collaborate with medical
researchers to apply for funding programs sponsored by NTH.

CONCLUSION

All these outcomes require a deep engagement with prob-
lems considered outside the realm of traditional Computer
Science. It is pointless to go halfway — our new community
must commit to the problems we are addressing, instead of
trying to “squeeze” technical nuggets out of them. In this
paper, I have argued that this shift is completely possible,
by choosing a broader ontological and epistemological basis
appropriate for the range of problems that Computer Sci-
ence is now addressing. By taking this expansive view, we
will not only contribute to other disciplines, but also to our
understanding of computing, and to its advancement as a
mature professional discipline.

REFERENCES

[1] A. V. Banerjee and E. Duflo. The Experimental
Approach to Development Economics. SSRN eLibrary,
2008.

[2] E. Duflo, R. Hanna, and S. Ryan. Monitoring Works:
Getting Teachers to Come to School. SSRN eLibrary,
2008.

[3] A. H. Eden. Three Paradigms of Computer Science.
Minds Mach., 17(2):135-167, 2007.

[4] J. Frederick P. Brooks. The computer scientist as
toolsmith II. Commun. ACM, 39(3):61-68, 1996.

[5] G. M. Hopper. The education of a computer. In ACM
’52: Proceedings of the 1952 ACM national meeting
(Pittsburgh), pages 243-249, New York, NY, USA,
1952. ACM.

[6] R. Jensen. The Digital Provide: Information
(Technology), Market Performance, and Welfare in the
South Indian Fisheries Sector. Quarterly Journal of
Economics, 122(3):879-924, 2007.

[7] A. Newell and H. A. Simon. Computer science as
empirical inquiry: symbols and search. Commun. ACM,
19(3):113-126, 1976.

[8] K. Shirima et al. The use of personal digital assistants
for data entry at the point of collection in a large
household survey in southern Tanzania. Emerging
Themes in Epidemiology, 4(1):5, 2007.



